
- •1.Биология как наука о закономерностях и механизмах жизнедеятельности и развития организмов, ее задачи. Объект и методы исследования.
- •2.Исторический метод и системный подход -основа познания общих законов природы.
- •3.Биосоциальная природа человека
- •4. Возрастающая роль познания биологических механизмов жизнедеятельности. Причины
- •5. Уровни организации живого (молекулярно-генетический, клеточный, организменный, популяционно-видовой, биосферный)
- •6.Доказательства единства органического мира на разных уровнях живых систем.
- •7. Клеточная теория. Ее естественнонаучное и мировоззренческое состояние.
- •8. Субмикроскопическое строение живой и растительной клетки. Клетка как открытия биологическая система. Строение и функции органоидов клетки.
- •9. Качественные особенности обмена веществ в живой системе
- •10.Формула Энштейна и ее анализ для понимания биопроцессов на Земле.
- •11. 2 Й закон термодинамики в применении к живым системам.Понятие об энторпии.
- •12.Основные формы обмена веществ
- •13. Биохимическая сущность фотосинтеза и космическая роль зеленых растений
- •- Только растения способны использовать неорганические вещества для синтеза органических (глюкоза) и выделять при этом в атмосферу кислород, необходимый гетеротрофам
- •14 Общность и различие фотосинтеза и дыхания.
- •15. Особенности ассимиляции и диссимиляции в гетеротрофном обмене веществ
- •4. Разновидности ассимиляции и диссимиляции
- •16. Фазы гетеротрофной ассимиляции
- •17. Этапы гетеротрофной диссимиляции
- •18. Гликолиз и тканевое дыхание
- •Гликолиз и дыхание
- •19. Окислительное фосфолирование. Свободная энергия. Лихорадка и гипертемия
- •20.Митохондрии энергосберегающие системы клеток. Эндосимбиотическая теория
- •21. Организм как открытая саморегулирующая система
- •22.Гомеостаз и гомеокинез
- •23 Схема строения нуклеиновых кислот(днк рнк)
- •24.Модель днк(Уотсон и Крик)
- •25.Хромосомы.Их строение.Число,функционирование.Номенклатура и классификация.Пуфы
- •26.Гомологичные хромосомы диплоидный набор хромосом
- •27.Гетерохроматин и эухроматин
- •28 Значение механизмов положительных и отрицательных обратных связей.Иммунитет
- •29.Генетические,клеточные и системные основы гомеостатических реакций многоклеточных организмов Принцип работы гомеостатических механизмов
- •30. Роль эндокринной и нервной систем в обеспечении постоянства внутренней среды и адаптовых изменений.
4. Возрастающая роль познания биологических механизмов жизнедеятельности. Причины
Чтобы понять природу биологического познания необходимо обозначить предмет исследования и то, на чем основано познание (методы исследования).
Комплекс биологических наук изучает мир живого, закономерности живых систем (современное представление). Причем в ходе развития биологии и других наук о живом происходило изменение их предмета исследования:
Так, на первых этапах развития биологии целью исследования был организм, соответственно предмет биологической науки описывался на организменном уровне.
Возникновение представлений о виде расширило понимание предмета биологии. Вид и популяция предстали как целостные биологические объекты, имеющие свои собственные закономерности построения, функционирования и развития. Формирование понятий о биоценозах, экосистемах, биосфере еще больше расширяют предмет биологической науки до надорганизменного уровня. Биология перешла к биосферному и популяционному мышлению.
Сходный процесс расширения предмета идет и в глубь организма в настоящее время. Это происходит при активном использовании физики, химии, и других точных наук. Следовательно, образуются новые интегративные, но по своему статусу биологические науки - биофизика, биохимия.
Таким образом, в предмет биологии включились все уровни организации жизни - организменный, надорганизменный (популяционно-видовой, экосистемный) и суборганизменный (молекулярный, клеточный). Далее добавилось обращение биологии к проблеме человека (выяснение роли природных факторов на жизнедеятельность человека и др.). Биология стала включенной в решение реальных проблем развития общества.
5. Уровни организации живого (молекулярно-генетический, клеточный, организменный, популяционно-видовой, биосферный)
Молекулярный уровень. На молекулярном уровне обнаруживается удивительное однообразие дискретных единиц. Жизненный субстрат для всех животных, растений, вирусов составляет всего 20 одних и тех же аминокислот и 4 одинаковых азотистых основания, входящих в состав молекул нуклеиновых кислот. Близкий состав имеют липиды и углеводы. У всех организмов биологическая энергия запасается в виде богатых энергией аденозинфосфорных кислот (АТФ, АДФ, АМФ). Наследственная информация у всех заложена в молекулах ДНК (исключение составляют лишь РНК-содержащие вирусы), способной к саморепродукции. Реализация наследственной информации осуществляется при участии молекул РНК, синтезируемых на матричных молекулах ДНК. В связи с тем, что с молекулярными структурами связано хранение, изменение и реализация наследственной информации, этот уровень иногда называют молекулярно-генетическим.
Клеточный уровень. На клеточном уровне также отмечается однотипность всех живых организмов. Клетка является основной самостоятельно функционирующей элементарной биологической единицей, характерной для всех живых организмов. У всех организмов только на клеточном уровне возможны биосинтез и реализация наследственной информации. Клеточный уровень у одноклеточных организмов совпадает с организменным. В истории жизни на нашей планете был такой период (первая половина архейской эры), когда все организмы находились на этом уровне организации. Из таких организмов состояли все виды, биоценозы и биосфера в целом.
Тканевый уровень. Совокупность клеток с одинаковым типом организации составляет ткань. Тканевый уровень возник вместе с появлением многоклеточных животных и растений, имеющих дифференцированные ткани. У многоклеточных организмов он развивается в период онтогенеза. Большое сходство между всеми организмами сохраняется на тканевом уровне. Совместно функционирующие клетки, относящиеся к разным тканям, составляют органы. Всего лишь 5 основных тканей входят в состав органов всех многоклеточных животных и 6 основных тканей образуют органы растений.
Организменный (онтогенетический) уровень. На организменном уровне обнаруживается труднообозримое многообразие форм. Разнообразие организмов, относящихся к разным видам, да и в пределах одного вида – следствие не разнообразия дискретных единиц низшего порядка, а все усложняющихся их пространственных комбинаций, обуславливающих новые качественные особенности. В настоящее время на Земле обитает более миллиона видов животных и около полумиллиона видов высших растений. Каждый вид состоит из отдельных индивидуумов.
Особь – организм как целое – элементарная единица жизни. Вне особей в природе жизнь не существует. На организменном уровне протекают процессы онтогенеза, поэтому уровень этот называют еще онтогенетическим. Нервная и гуморальная системы осуществляют саморегуляцию в организме и обуславливают определенный гомеостаз.
Популяционно-видовой уровень. Совокупность организмов (особей) одного вида, наследующих определенную территорию, свободно между собой скрещивающихся, составляют популяцию. Популяция – это элементарная единица эволюционного процесса; в ней начинаются процессы видообразования. Популяция входит в состав биогеоценозов.
Биоценотический и биосферный уровни. Биогоеценозы – исторически сложившиеся устойчивые сообщества популяций разных видов, связанных меду собой и окружающей неживой природой обменом веществ, энергии и информации. Они являются элементарными системами, в которых осуществляется вещественно-энергетический круговорот, обусловленный жизнедеятельностью организмов. Биогеоценозы составляют биосферу и обуславливают все процессы, протекающие в ней.
Только при комплексном изучении явлений жизни на всех уровнях можно получить целостное представление об особой (биологической) форме существования материи.
Представление об уровнях организации жизни имеет непосредственное отношение к основным принципам медицины. Она заставляет смотреть на здоровый и больной человеческий организм как на целостную, но в то же время сложную иерархически соподчиненную систему организации. Знание структур и функций на каждом из них помогает вскрыть сущность болезненного процесса. Учет той человеческой популяции, к которой относится данный индивидуум, может потребоваться, например, при диагностике наследственной болезни. Для вскрытия особенностей течения заболевания и эпидемического процесса необходимо также учитывать особенности биоценотической и социальной среды. Имеет ли дело врач с отдельным больным или человеческим коллективом, он всегда основывается на комплексе знаний, полученных на всех уровнях биологических микро-, мезо- и макросистем.