- •1.Биология как наука о закономерностях и механизмах жизнедеятельности и развития организмов, ее задачи. Объект и методы исследования.
- •2.Исторический метод и системный подход -основа познания общих законов природы.
- •3.Биосоциальная природа человека
- •4. Возрастающая роль познания биологических механизмов жизнедеятельности. Причины
- •5. Уровни организации живого (молекулярно-генетический, клеточный, организменный, популяционно-видовой, биосферный)
- •6.Доказательства единства органического мира на разных уровнях живых систем.
- •7. Клеточная теория. Ее естественнонаучное и мировоззренческое состояние.
- •8. Субмикроскопическое строение живой и растительной клетки. Клетка как открытия биологическая система. Строение и функции органоидов клетки.
- •9. Качественные особенности обмена веществ в живой системе
- •10.Формула Энштейна и ее анализ для понимания биопроцессов на Земле.
- •11. 2 Й закон термодинамики в применении к живым системам.Понятие об энторпии.
- •12.Основные формы обмена веществ
- •13. Биохимическая сущность фотосинтеза и космическая роль зеленых растений
- •- Только растения способны использовать неорганические вещества для синтеза органических (глюкоза) и выделять при этом в атмосферу кислород, необходимый гетеротрофам
- •14 Общность и различие фотосинтеза и дыхания.
- •15. Особенности ассимиляции и диссимиляции в гетеротрофном обмене веществ
- •4. Разновидности ассимиляции и диссимиляции
- •16. Фазы гетеротрофной ассимиляции
- •17. Этапы гетеротрофной диссимиляции
- •18. Гликолиз и тканевое дыхание
- •Гликолиз и дыхание
- •19. Окислительное фосфолирование. Свободная энергия. Лихорадка и гипертемия
- •20.Митохондрии энергосберегающие системы клеток. Эндосимбиотическая теория
- •21. Организм как открытая саморегулирующая система
- •22.Гомеостаз и гомеокинез
- •23 Схема строения нуклеиновых кислот(днк рнк)
- •24.Модель днк(Уотсон и Крик)
- •25.Хромосомы.Их строение.Число,функционирование.Номенклатура и классификация.Пуфы
- •26.Гомологичные хромосомы диплоидный набор хромосом
- •27.Гетерохроматин и эухроматин
- •28 Значение механизмов положительных и отрицательных обратных связей.Иммунитет
- •29.Генетические,клеточные и системные основы гомеостатических реакций многоклеточных организмов Принцип работы гомеостатических механизмов
- •30. Роль эндокринной и нервной систем в обеспечении постоянства внутренней среды и адаптовых изменений.
26.Гомологичные хромосомы диплоидный набор хромосом
Гомологи́чные хромосо́мы — пара хромосом приблизительно равной длины, с одинаковым положением центромеры и дающие одинаковую картину при окрашивании. Их гены в соответствующих (идентичных) локусах представляют собой аллельные гены - аллели, т.е. кодируют одни и те же белки или РНК. При двуполом размножении одна гомологичная хромосома наследуется организмом от матери, а другая — от отца[1].
В ходе удвоения ДНК в S-фазе интерфазы, предшествующей митозу, образуется две идентичные хроматиды, несущие один и тот же генетический материал. В дальнейшем в каждую дочернюю клетку попадает по одной такой хроматиде из пары хроматид данной хромосомы. В результате дочерняя клетка оказывается точной генетической копией материнской (это, правда, не касается тех случаев, когда имеют место различные мутации и перестройки) и имеет такое же число хромосом, что и материнская.
У диплоидных (2n) организмов геном представлен парами гомологичных хромосом. При мейозе гомологичные хромосомы обмениваются своими участками. Это явление лежит в основе рекомбинации генетического материала и носит название кроссинговер.
Гомологичные хромосомы не идентичны друг другу. Они имеют один и тот же набор генов, однако они могут быть представлены как различными (у гетерозигот), так и одинаковыми (угомозигот) аллелями, то есть формами одного и того же гена, ответственными за проявление различных вариантов одного и того же признака. Кроме того, в результате некоторых мутаций (дупликаций, инверсий, делеций и транслокаций) могут возникать гомологичные хромосомы, различающиеся наборами или расположением генов.
Диплоидный набор хромосом (син.: двойной набор хромосом, зиготический набор хромосом, полный набор хромосом, соматический набор хромосом)
совокупность хромосом, присущая соматическим клеткам, в которой все характерные для данного биологического вида хромосомы представлены попарно; у человека Д. н. х. содержит 44 аутосомы и 2 половые хромосомы.
27.Гетерохроматин и эухроматин
Хроматин, его классификация. Строение хромосом. В ядре клеток обнаруживаются мелкие зернышки и глыбки материала, который окрашивается основными красителями и поэтому был назван хроматином (от греч. chroma – краска). Хроматин представляет собой дезоксирибонуклеопротеид (ДНП) и состоит из ДНК, соединённой с белка-ми-гистонами или негистоновыми белками. Гистоны и ДНК объединены в структуры, которые называются нук-леосомами. Хроматин соответствует хромосомам, которые в интерфазном ядре представлены длинными перекру-ченными нитями и неразличимы как индивидуальные структуры. Выраженность спирализации каждой из хромо-сом неодинакова по их длине. Реализацию генетической информации осуществляют деспирализованные участки хромосом. Классификация хроматина. Различают два вида хроматина: 1) эухроматин, локализующийся ближе к центру ядра, более светлый, более деспирилизованный, менее компакт-ный, более активен в функциональном отношении. Предполагается, что в нем сосредоточена та ДНК, которая в интерфазе генетически активна. Эухроматин соответствует сегментам хромосом, которые деспирализованы и от-крыты для транскрипции. Эти сегменты не окрашиваются и не видны в световой микроскоп. 2) гетерохроматин - плотно спирализованная часть хроматина. Гетерохроматин соответствует конденсированным, плотно скрученным сегментам хромосом (что делает их недоступными для транскрипции). Он интенсивно окра-шивается основными красителями, и в световом микроскопе имеет вид тёмных пятен, гранул. Гетерохроматин располагается ближе к оболочке ядра, более компактен, чем эухроматин и содержит “молчащие” гены, т.е. гены, которые в настоящий момент неактивны. Различают конститутивный и факультативный гетерохроматин. Консти-тутивный гетерохроматин никогда не переходит в эухроматин и является гетерохроматином во всех типах клеток. Факультативный гетерохроматин может превращаться в эухоматин в некоторых клетках или на разных стадиях онтогенеза организма. Примером скопления факультативного гетерохроматина является тельце Барра – инактиви-рованная Х-хромосома у самок млекопитающих, которая в интерфазе плотно скручена и неактивна. В большинст-ве клеток оно лежит у кариолеммы. Таким образом, по морфологическим признакам ядра (по соотношению содержания эу- и гетерохромати-на) можно оценить активность процессов транскрипции, а, следовательно, синтетической функции клетки. При её повышении это соотношение изменяется в пользу эухроматина, при снижении – нарастает содержание гетеро-хроматина. При полном подавлении функций ядра (например, в поврежденных и гибнущих клетках, при орогове-нии эпителиальных клеток эпидермиса – кератиноцитов, при образовании ретикулоцитов крови) оно уменьшается в размерах, содержит только гетерохроматин и окрашивается основными красителями интенсивно и равномерно. Такое явление называется кариопикнозом (от греч. karyon – ядро и pyknosis – уплотнение). Хроматин и хромосомы представляют собой дезоксирибонуклеопротеиды (ДНП), но хроматин – это рас-крученное, а хромосомы – скрученное состояние. Хромосом в интерфазном ядре нет, они хромосомы появляются при разрушении ядерной оболочки (во время деления). Распределение гетерохроматина (топография его частиц в ядре) и соотношение содержания эу- и гетеро-хроматина характерны для клеток каждого типа, что позволяет осуществить их идентификацию как визуально, так и с помощью автоматических анализаторов изображения. Вместе с тем, имеются определенные общие закономер-ности распределения гетерохроматина в ядре: его скопления располагаются под кариолеммой, прерываясь в об-ласти пор (что обусловлено его связью с ламиной) и вокруг ядрышка (перинуклеолярный гетерохроматин), более мелкие глыбки разбросаны по всему ядру. Строение хромосом Хромосомы представляют собой наиболее упакованное состояние хроматина. Наиболее компактные хромо-сомы видны на стадии метафазы, при этом они состоят из двух хроматид, связанных в области центромеры.
