- •Пояснительная записка
- •Перечень практических работ
- •Практическая работа № 1 Действия с рациональными числами
- •Средства обучения:
- •Практическая работа № 2 Решение рациональных уравнений, неравенств, систем уравнений и неравенств первой степени
- •Средства обучения:
- •Практическая работа № 3 Решение рациональных уравнений, неравенств, систем уравнений и неравенств второй степени
- •Средства обучения:
- •Практическая работа № 4 Практические приёмы приближённых вычислений
- •Средства обучения:
- •Практическая работа № 5 Преобразование и вычисление числовых значений алгебраических выражений, содержащих степени с рациональными показателями
- •Средства обучения:
- •Практическая работа № 6 Преобразование и вычисление числовых значений алгебраических выражений, содержащих корни n-ой степени ( )
- •Средства обучения:
- •Практическая работа № 7 Преобразование и вычисление числовых значений алгебраических выражений, содержащих степени и корни
- •Средства обучения:
- •Практическая работа № 8 Вычисление логарифма числа
- •Средства обучения:
- •Практическая работа № 9 Логарифмирование и потенцирование алгебраических выражений
- •Средства обучения:
- •Практическая работа № 10 Практические приёмы вычисления логарифма числа с произвольным основанием
- •Средства обучения:
- •Практическая работа № 11 Преобразование и вычисление значений показательных и логарифмических выражений. Простейшие показательные и логарифмические уравнения
- •Средства обучения:
- •Практическая работа № 12 Решение простейших тригонометрических уравнений с использованием единичной числовой окружности
- •Средства обучения:
- •Практическая работа № 13 Практические приёмы вычисления значений синуса, косинуса и тангенса произвольного числового аргумента
- •Средства обучения:
- •Средства обучения:
- •Средства обучения:
- •Средства обучения:
- •Практическая работа № 17 Основные методы решения тригонометрических уравнений
- •Средства обучения:
- •Практическая работа № 18 Нахождение области определения функции. Вычисление значения функции в заданной точке. Построение графиков функций
- •Средства обучения:
- •Практическая работа № 19 Степенные функции, их свойства и графики
- •Средства обучения:
- •Виды самостоятельной работы:
- •Практическая работа № 20 Показательные функции, их свойства и графики
- •Средства обучения:
- •Практическая работа № 21 Логарифмические функции, их свойства и графики
- •Средства обучения:
- •Практическая работа № 22
- •Их свойства и графики
- •Средства обучения:
- •Практическая работа № 23
- •Средства обучения:
- •Практическая работа № 24 Основные приёмы решения иррациональных уравнений и систем уравнений
- •Средства обучения:
- •Практическая работа № 25 Основные приёмы решения показательных уравнений и неравенств, систем уравнений и неравенств
- •Средства обучения:
- •Практическая работа № 26 Основные приёмы решения логарифмических уравнений и неравенств, систем уравнений и неравенств
- •Средства обучения:
- •Практическая работа № 27 Основные приёмы решения тригонометрических уравнений и неравенств, систем уравнений
- •Средства обучения:
- •Практическая работа № 28 Решение неравенств методом интервалов
- •Средства обучения:
- •Практическая работа № 29 Решение уравнений, неравенств и их систем с двумя переменными. Геометрическая интерпретация множества решений
- •Средства обучения:
- •Практическая работа № 30 Решение задач прикладного характера, сводящихся к составлению уравнений, неравенств и их систем
- •Средства обучения:
- •Перечень литературы
Практическая работа № 30 Решение задач прикладного характера, сводящихся к составлению уравнений, неравенств и их систем
Цель: научиться решать задачи, сводящиеся к составлению уравнений, неравенств и их систем.
Место проведения: учебная аудитория, ОБОУ СПО «Курский электромеханический техникум».
Средства обучения:
линейка и карандаш;
методические рекомендации к практической работе № 30.
Виды самостоятельной работы:
решение задач на составление уравнений;
решение задач на составление систем уравнений;
решение задач на составление неравенств или систем неравенств.
Практические задания
Вариант 1
1.
Магазин в первый день продал половину
привезённых мешков сахара да ещё
мешка сахара; во второй день
часть остатка да ещё
мешка сахара, а в третий день магазин
продал оставшихся 33 мешка. Сколько всего
мешков сахара было привезено в магазин?
2. Имеются два раствора серной кислоты в воде: первый – 40%-й, второй- 60%-й. Эти два раствора смешали , после чего добавили 5 кг чистой воды и получили 20% раствор. Если бы вместо 5 кг чистой воды добавили 5 кг 80%-го раствора, то получился бы 70%-й раствор. Сколько было 40%-го раствора и 60%-го раствора?
3. Из пункта А в пункт В, находящийся на расстоянии 105 км от пункта А, со некоторой скоростью выезжает автобус. Через 30 минут вслед за ним из А со скоростью 40 км/ч отправляется автомобиль, который догнав автобус, поворачивает обратно. Определите скорость автобуса, при которой автомобиль возвращается в А позже, чем автобус приходит в В.
Вариант 2
1.
Автомобилист проехал расстояние между
двумя городами за 3 дня. В первый день
он проехал
всего
пути и ещё 60 км, во второй он проехал
всего пути и ещё20 км, а в третий день он
проехал
всего пути и оставшиеся 25 км. Найдите
расстояние между городами.
2. Имеется кусок сплава меди с оловом общей массой 12 кг, содержащий 45% меди. Сколько чистого олова надо прибавить к этому куску сплава, чтобы получившийся новый сплав содержал 40% меди?
3. В контейнере находятся коробки и ящики общим числом более 16. Если вдвое увеличить количество коробок и на 20 – количество ящиков, то ящиков будет больше, чем коробок. Найдите количество коробок и ящиков, если известно, что первоначальное количество коробок больше удвоенного количества ящиков.
Вариант 3
1. В течении года завод дважды увеличивал выпуск продукции на одно и то же число процентов. Найдите это число, если известно, что в начале года завод ежемесячно выпускал 600 изделий, а в конце года стал выпускать ежемесячно 726 изделий.
2. В реку впадает приток. Катер отходит от пункта А, находящегося на притоке, плывёт по течению 80 км до впадения притока в реку в пункте В, а затем идёт вверх по реке до пункта С. На путь от А до С он затратил 18 часов, на обратный путь – 15 часов. Найдите расстояние от В до С, если известно, что скорость течения реки3км/ч, а собственная скорость катера 18 км/ч.
3. На реке, скорость течения которой 5 км/ч, в направлении её течения расположены пристани А,В и С, причём В находится посередине между А и С. От пристани В одновременно отходят плот , который движется по течению к пристани С, и катер, который идёт к пристани А, причём скорость катера в стоячей воде равна v км/ч. Дойдя до пристани А, катер разворачивается и движется по направлению к пристани С. Найдите все те значения v, при которых катер приходит в С позже, чем плот.
Вариант 4
1. Моторная лодка, скорость которой в стоячей воде равна 10 км/ч, проплыла по течению 91 км и вернулась обратно. Найдите скорость течения реки, если лодка провела в пути 20 часов.
2. Фирма А может выполнить заказ на производство игрушек на 4 дня быстрее, чем фирма В. За какое время может выполнить этот заказ каждая фирма, если известно, что при совместной работе за 24 дня они выполняют заказ в 5 раз больший?
3. В контейнере находятся коробки и ящики общим числом более 16. Если вдвое увеличить количество коробок и на 20 – количество ящиков, то ящиков будет больше, чем коробок. Найдите количество коробок и ящиков, если известно, что первоначальное количество коробок больше удвоенного количества ящиков.
Требования к отчёту:
1. После выполнения работы студент обязан продемонстрировать преподавателю выполненные задания.
2. Предоставить отчёт о выполненной работе, содержащий:
- порядковый номер и наименование практической работы;
- цель практической работы;
- ход выполнения работы;
- вывод о выполненном задании.
Сделайте вывод о том, какие математические навыки вы приобрели на этом занятии.
Критерии оценок практических работ
Отметка |
Качество выполнения практических заданий |
5 |
Задания выполнены полностью и правильно: правильно выбран способ решения задач, решение сопровождаются необходимыми объяснениями, верно выполнены нужные вычисления и преобразования, получен верный ответ, последовательно и аккуратно записано решение. Сделаны правильные выводы. |
4 |
Работа выполнена полностью, но допущена одна ошибка или два-три недочета в выкладках, рисунках, графиках. |
3 |
Работа выполнена правильно не менее чем на половину всего объема предоставленных заданий.
Работа выполнена с допущением более одной ошибки или более двух-трех недочетов в выкладках, чертежах или графиках, но студент владеет обязательными умениями по данной теме практической работы. |
2 |
При выполнении работы допущены существенные ошибки, показавшие, что студент не владеет обязательными умениями по данной теме в полной мере. |
