- •Пояснительная записка
- •Перечень практических работ
- •Практическая работа № 1 Действия с рациональными числами
- •Средства обучения:
- •Практическая работа № 2 Решение рациональных уравнений, неравенств, систем уравнений и неравенств первой степени
- •Средства обучения:
- •Практическая работа № 3 Решение рациональных уравнений, неравенств, систем уравнений и неравенств второй степени
- •Средства обучения:
- •Практическая работа № 4 Практические приёмы приближённых вычислений
- •Средства обучения:
- •Практическая работа № 5 Преобразование и вычисление числовых значений алгебраических выражений, содержащих степени с рациональными показателями
- •Средства обучения:
- •Практическая работа № 6 Преобразование и вычисление числовых значений алгебраических выражений, содержащих корни n-ой степени ( )
- •Средства обучения:
- •Практическая работа № 7 Преобразование и вычисление числовых значений алгебраических выражений, содержащих степени и корни
- •Средства обучения:
- •Практическая работа № 8 Вычисление логарифма числа
- •Средства обучения:
- •Практическая работа № 9 Логарифмирование и потенцирование алгебраических выражений
- •Средства обучения:
- •Практическая работа № 10 Практические приёмы вычисления логарифма числа с произвольным основанием
- •Средства обучения:
- •Практическая работа № 11 Преобразование и вычисление значений показательных и логарифмических выражений. Простейшие показательные и логарифмические уравнения
- •Средства обучения:
- •Практическая работа № 12 Решение простейших тригонометрических уравнений с использованием единичной числовой окружности
- •Средства обучения:
- •Практическая работа № 13 Практические приёмы вычисления значений синуса, косинуса и тангенса произвольного числового аргумента
- •Средства обучения:
- •Средства обучения:
- •Средства обучения:
- •Средства обучения:
- •Практическая работа № 17 Основные методы решения тригонометрических уравнений
- •Средства обучения:
- •Практическая работа № 18 Нахождение области определения функции. Вычисление значения функции в заданной точке. Построение графиков функций
- •Средства обучения:
- •Практическая работа № 19 Степенные функции, их свойства и графики
- •Средства обучения:
- •Виды самостоятельной работы:
- •Практическая работа № 20 Показательные функции, их свойства и графики
- •Средства обучения:
- •Практическая работа № 21 Логарифмические функции, их свойства и графики
- •Средства обучения:
- •Практическая работа № 22
- •Их свойства и графики
- •Средства обучения:
- •Практическая работа № 23
- •Средства обучения:
- •Практическая работа № 24 Основные приёмы решения иррациональных уравнений и систем уравнений
- •Средства обучения:
- •Практическая работа № 25 Основные приёмы решения показательных уравнений и неравенств, систем уравнений и неравенств
- •Средства обучения:
- •Практическая работа № 26 Основные приёмы решения логарифмических уравнений и неравенств, систем уравнений и неравенств
- •Средства обучения:
- •Практическая работа № 27 Основные приёмы решения тригонометрических уравнений и неравенств, систем уравнений
- •Средства обучения:
- •Практическая работа № 28 Решение неравенств методом интервалов
- •Средства обучения:
- •Практическая работа № 29 Решение уравнений, неравенств и их систем с двумя переменными. Геометрическая интерпретация множества решений
- •Средства обучения:
- •Практическая работа № 30 Решение задач прикладного характера, сводящихся к составлению уравнений, неравенств и их систем
- •Средства обучения:
- •Перечень литературы
Практическая работа № 29 Решение уравнений, неравенств и их систем с двумя переменными. Геометрическая интерпретация множества решений
Цель: научиться решать уравнения, неравенства, их системы с двумя переменными, геометрически изображать их решение.
Место проведения: учебная аудитория, ОБОУ СПО «Курский электромеханический техникум».
Средства обучения:
линейка и карандаш;
методические рекомендации к практической работе № 29.
Виды самостоятельной работы:
решение целых рациональных неравенств;
решение дробно-рациональных неравенств;
решение иррациональных, логарифмических неравенств методом интервалов.
Краткая теоретическая справка
Уравнение вида f(x;y)=0 называется уравнением с двумя переменными.
Решением уравнения с двумя переменными называется упорядоченная пара чисел (α, β), при подстановке которой (α – вместо х, β – вместо у) в уравнении имеет смысл выражение f(α; β)=0 .
Решить уравнение – значит найти множество всех его решений.
Уравнение с двумя переменными может:
а) иметь одно решение. Например, уравнение х2+у2=0 имеет одно решение (0;0);
б) иметь несколько решений. Например, (5 -|x|) 2 + (|y| - 2)2 = 0 имеет 4 решения: (5; 2), (-5; 2), (5; -2), (-5; -2);
в) не иметь решений. Например уравнение х2+у2+1=0 не имеет решений;
г) иметь бесконечно много решений. Например, такое уравнение, как х-у+1=0 имеет бесконечно много решений.
Иногда бывает полезной геометрическая интерпретация уравнения f(x;y)=g(x;y). На координатной плоскости хОу множество всех решений – некоторое множество точек. В ряде случаев это множество точек есть некоторая линия, и в этом случае говорят, что уравнение f(x;y)=g(x;y) есть уравнение этой линии, например:
уравнение Ах+Ву+С=0 (А2+В2
0)
есть уравнение прямой (рис.1);уравнение х2+у2=R2 (R 0) есть уравнение окружности ( рис.2);
уравнение ху=а (а 0) есть уравнение гиперболы (рис.3,4);
уравнение у=ах2+bх+с (а 0) есть уравнение параболы (рис.5);
уравнение
х2+у2=0
задает одну точку (0;0) (рис.6).
рис.1 рис.2 рис.3 рис.4
рис.5 рис. 6
Основными методами решения уравнений с двумя переменными являются методы, основанные на разложении выражений на множители, выделение полного квадрата, использование свойств квадратного уравнения, ограниченности выражений, оценочные методы. Уравнение, как правило, преобразовывают к виду, из которого можно получить систему для нахождения неизвестных.
Неравенство
с двумя неизвестными
можно представить так: f(x;y)>
,
где f(x;y),
–
многочлен двух переменных х и у. Его
можно записать в виде
.
Неравенства,
содержащие неизвестные, могут быть вида
F(x,y)<0,
F(x,y)>0, F(x,y)
0, F(x,y)
0.
Решением неравенства с двумя переменными называется пара значений переменных, обращающих неравенство в верное числовое неравенство.
Чтобы решить графически систему двух неравенств с двумя неизвестными, надо:
1) в каждом из них перенести все члены в одну часть, т.e. привести неравенства к виду:
2) построить графики функций, заданных неявно: f(x,y)=0 и g(x,y)=0;
3) каждый их этих графиков делит координатную плоскость на две части: в одной из них неравенство справедливо, в другой – нет; чтобы решить графически каждое из этих неравенств, достаточно проверить справедливость неравенства в одной произвольной точке внутри любой части плоскости; если неравенство имеет место в этой точке, значит эта часть координатной плоскости является его решением, если нет – то решением является противоположная часть плоскости;
4) решением заданной системы неравенств является пересечение (общая область) частей координатной плоскости.
Практические задания
1. Решите уравнение с двумя неизвестными.
а)
; б)
; в)
.
2. Решите неравенство:
а)
; б)
.
3. Изобразите множество решений системы неравенств на координатной плоскости
а)
б)
Требования к отчёту:
1. После выполнения работы студент обязан продемонстрировать преподавателю выполненные задания.
2. Предоставить отчёт о выполненной работе, содержащий:
- порядковый номер и наименование практической работы;
- цель практической работы;
- ход выполнения работы;
- ответы на контрольные вопросы;
- вывод о выполненном задании.
Контрольные вопросы
1. Какие методы решения уравнений с двумя неизвестными вы знаете?
2. В чем заключается графический метод решения неравенств с двумя неизвестными?
3. Как решить графически систему неравенств с двумя неизвестными?
Сделайте вывод о том, какие математические навыки вы приобрели на этом занятии.
