- •Пояснительная записка
- •Перечень практических работ
- •Практическая работа № 1 Действия с рациональными числами
- •Средства обучения:
- •Практическая работа № 2 Решение рациональных уравнений, неравенств, систем уравнений и неравенств первой степени
- •Средства обучения:
- •Практическая работа № 3 Решение рациональных уравнений, неравенств, систем уравнений и неравенств второй степени
- •Средства обучения:
- •Практическая работа № 4 Практические приёмы приближённых вычислений
- •Средства обучения:
- •Практическая работа № 5 Преобразование и вычисление числовых значений алгебраических выражений, содержащих степени с рациональными показателями
- •Средства обучения:
- •Практическая работа № 6 Преобразование и вычисление числовых значений алгебраических выражений, содержащих корни n-ой степени ( )
- •Средства обучения:
- •Практическая работа № 7 Преобразование и вычисление числовых значений алгебраических выражений, содержащих степени и корни
- •Средства обучения:
- •Практическая работа № 8 Вычисление логарифма числа
- •Средства обучения:
- •Практическая работа № 9 Логарифмирование и потенцирование алгебраических выражений
- •Средства обучения:
- •Практическая работа № 10 Практические приёмы вычисления логарифма числа с произвольным основанием
- •Средства обучения:
- •Практическая работа № 11 Преобразование и вычисление значений показательных и логарифмических выражений. Простейшие показательные и логарифмические уравнения
- •Средства обучения:
- •Практическая работа № 12 Решение простейших тригонометрических уравнений с использованием единичной числовой окружности
- •Средства обучения:
- •Практическая работа № 13 Практические приёмы вычисления значений синуса, косинуса и тангенса произвольного числового аргумента
- •Средства обучения:
- •Средства обучения:
- •Средства обучения:
- •Средства обучения:
- •Практическая работа № 17 Основные методы решения тригонометрических уравнений
- •Средства обучения:
- •Практическая работа № 18 Нахождение области определения функции. Вычисление значения функции в заданной точке. Построение графиков функций
- •Средства обучения:
- •Практическая работа № 19 Степенные функции, их свойства и графики
- •Средства обучения:
- •Виды самостоятельной работы:
- •Практическая работа № 20 Показательные функции, их свойства и графики
- •Средства обучения:
- •Практическая работа № 21 Логарифмические функции, их свойства и графики
- •Средства обучения:
- •Практическая работа № 22
- •Их свойства и графики
- •Средства обучения:
- •Практическая работа № 23
- •Средства обучения:
- •Практическая работа № 24 Основные приёмы решения иррациональных уравнений и систем уравнений
- •Средства обучения:
- •Практическая работа № 25 Основные приёмы решения показательных уравнений и неравенств, систем уравнений и неравенств
- •Средства обучения:
- •Практическая работа № 26 Основные приёмы решения логарифмических уравнений и неравенств, систем уравнений и неравенств
- •Средства обучения:
- •Практическая работа № 27 Основные приёмы решения тригонометрических уравнений и неравенств, систем уравнений
- •Средства обучения:
- •Практическая работа № 28 Решение неравенств методом интервалов
- •Средства обучения:
- •Практическая работа № 29 Решение уравнений, неравенств и их систем с двумя переменными. Геометрическая интерпретация множества решений
- •Средства обучения:
- •Практическая работа № 30 Решение задач прикладного характера, сводящихся к составлению уравнений, неравенств и их систем
- •Средства обучения:
- •Перечень литературы
Практическая работа № 22
Тригонометрические функции y=sin x, y= cos x,
Их свойства и графики
Цель: научиться строить графики тригонометрических функций y=sin x и y= cos x, описывать их свойства, решать уравнения функционально-графическим методом.
Место проведения: учебная аудитория, ОБОУ СПО «Курский электромеханический техникум».
Средства обучения:
линейка и карандаш;
методические рекомендации к практической работе № 22.
Виды самостоятельной работы:
построение графиков функций, описание свойств функций;
решение уравнений функционально-графическим методом.
Краткая теоретическая справка
При выполнении работы потребуется выполнять преобразования графиков функций, правила которых перечислены в таблице.
Общий вид функции |
Преобразования |
y = f(x - b) |
Параллельный перенос графика вдоль оси абсцисс на |b| единиц
|
y = f(x + b) |
|
y = f(x) + m |
Параллельный перенос графика вдоль оси ординат на |m| единиц
|
|
Отражение графика |
y = f( - x) |
Симметричное отражение графика относительно оси ординат. |
y = - f(x) |
Симметричное отражение графика относительно оси абсцисс. |
|
Сжатие и растяжение графика |
y = f(kx) |
|
y = kf(x) |
|
|
Преобразования графика с модулем |
y = |f(x)| |
|
y = f(| x |) |
|
Практические задания
1. Построить график функции.
2. Решить графически уравнение.
3. Построить и прочитать график функции.
Для аудиторной работы
1.
а)
;
б)
.
2.
.
3.
Для самостоятельной работы
Вариант 1
1.
а)
;
б)
.
2.
.
3.
Вариант 2
1.
а)
;
б)
.
2.
.
3.
Вариант 3
1.
а)
;
б)
.
2.
.
3.
Вариант 4
1.
а)
;
б)
.
2.
.
3.
Требования к отчёту:
1. После выполнения работы студент обязан продемонстрировать преподавателю выполненные задания.
2. Предоставить отчёт о выполненной работе, содержащей:
- порядковый номер и наименование практической работы;
- цель практической работы;
- ход выполнения работы;
- ответы на контрольные вопросы;
- вывод о выполненном задании.
Контрольные вопросы
1. Что является областью определения функции y=sin x?
2. Что является областью значения функции y=сos x?
3. Как называется график функции y=sin x?
4. Являются ли функции y=sin x и y=сos x ограниченными?
5.Докажите, что функция y=сos x является периодической.
Сделайте вывод о том, какие математические навыки вы приобрели на этом занятии.
