Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект лекций по физике (бак).doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
4.95 Mб
Скачать

Часть III. Электричество и магнетизм

ЭЛЕКТРОСТАТИКА

Тема 1. Теорема Остроградского-Гаусса для электростатического поля

Электростатическое поле – это особый вид материи, с помощью которой происходит взаимодействие заряженных тел.

Точечным называется заряд, сосредоточенный на теле, размерами которого можно пренебречь по сравнению с расстоянием до других заряженных тел, с которыми он взаимодействует.

Закон Кулона: сила взаимодействия F между двумя неподвижными точечными зарядами q1 и q2 прямопропорциональна величинам этих зарядов и обратно пропорциональна квадрату расстояния r между ними:

,

где (0 – электрическая постоянная);

 – диэлектрическая проницаемость среды, показывающая во сколько раз сила взаимодействия зарядов в данной среде меньше, чем в вакууме.

Кулоновская сила направлена по прямой, соединяющей взаимодействующие точечные заряды, соответствует притяжению в случае разноименных зарядов и отталкиванию в случае одноименных зарядов. Элект­рические поля, которые создаются неподвижными электрическими зарядами, называ­ются электростатическими.

Для обнаружения и опытного исследования электростатического поля можно использовать пробный точечный заряд q0 . Если этот заряд поместить в какую- либо точку электростатического поля, то на него будет действовать сила , величина и направление которой определяет силовую характеристику электростатического поля, носящую название напряженности электростатического поля.

Напряженность электростатического поля в данной точке есть физическая величина , определяемая силой, действующей на пробный точечный положительный заряд q0 , помещенный в эту точку поля, то есть:

.

Напряжённость электростатического поля, создаваемого точечным зарядом q в любой точке поля, находящейся на расстоянии r от этого заряда:

.

Э лектростатическое поле может быть изображено графически с помощью силовых линий. Силовая линия — это такая линия, касательная в каждой точке к которой совпадает по направлению с вектором напряженности электростатическго поля в данной точке (рис. 1, 2).

Рис. 1 Рис. 2

Если поле создается точечным зарядом, то силовые линии – это радиальные прямые, выходящие из положительного заряда (рис. 2, а), и входя­щие в отрицательный заряд (рис. 2, б).

С помощью силовых линий можно характеризовать не только направление, но и величину напряженности электростатического поля, связывая её с густотой силовых линий. Большей густоте силовых линий соответствует большая величина напряженности (рис. 1, 2). Количественно числу силовых линий, прони­зывающих единичную площадку, расположенную перпендикулярно силовым линиям, ставится в соответствие величина напряженности электростатического поля. В этом случае определенному заряду q, создающему поле, соответствует определенное число N силовых линий, выходящих (для ) из заряда или входящих (для ) в заряд, а именно: .

Поток вектора напряженности электростатического поля через произвольную площадку S характеризуется числом силовых линий, пронизывающих данную площадку S.

Если площадка S перпендикулярна силовым линиям (рис. 3), то поток ФЕ вектора напряженности через данную площадку S : .

Рис. 3 Рис. 4

Е

Рис. 3

сли же площадка S расположена неперпендикулярно силовым линиям электро-статического поля (рис. 4), то поток вектора через данную площадку S :

,

где α – угол между векторами напряженности и нормали к площадке S.

Д ля того, чтобы найти поток ФЕ вектора напряженности через произвольную поверхность S, необходимо разбить эту поверхность на элементарные площадки dS (рис. 5), определить элементарный поток dФЕ через каждую элементарную площадку dS по формуле: ,

а затем все эти элементарные потоки dФЕ сложить, что приводит к интегрированию:

,

г

Рис. 7

де α – угол между векторами напряженности и нормали к данной элементарной площадке dS .

Если ввести вектор (рис. 5) как вектор, равный по величине площади площадки dS и направленный по вектору нормали к площадке dS , то величина , где угол между векторами и может быть записана в виде скалярного произведения векторов и , то есть, как , а полученное соотношение для потока вектора примет вид:

.

Теорема Остроградского - Гаусса для электростатического поля. Теорема Остроградского - Гаусса для электростатического поля связывает между собой величину потока ФЕ вектора напряженности электростатического поля в вакууме через произвольную замкнутую поверхность S с величиной заряда q, заключенного внутри данной замкнутой поверхности S (рис. 6).

П

Рис. 6

оскольку все силовые линии, выходящие из заряда (для ) или входящие в заряд (для ), пронизывают произвольную замкнутую поверхность S, охватывающую этот заряд (рис. 6), то величина потока ФЕ вектора напряженности электростатического поля через эту произвольную замкнутую поверхность S будет определяться числом N силовых линий, выходящих из заряда (для ) или входящих в заряд (для ):

.

Это соотношение есть теорема Остроградского-Гаусса для электростатического поля.

Так как поток считается положитель­ным, если силовые линии выходят из поверхности S, и отрицательным для линий, входящих в поверхность S, то в случае, если внутри произвольной замкнутой поверхности S находится не один, а несколько (n) разноименных зарялов, то теорема Остроградского - Гаусса для электростатического поля формулируется следующим образом:

поток вектора напряженности электростатического поля в вакууме через произ­вольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на 0 :

.

В общем случае электрические заряды могут быть распределены внутри объёма, ограниченного замкнутой поверхностью S, с некоторой объемной плотностью ( ), различной в разных местах пространства. Тогда суммарный заряд, заключенный внутри этой замкнутой поверхности S, охватывающей объем V, равен: .

В таком случае теорема Остроградского - Гаусса приобретает вид:

.

Напряженность электростатического поля зависит от диэлектрических свойств среды. В диэлектрике напряженность поля меньше, чем напряженность внешнего электростатического поля в вакууме, в котором находится диэлектрик, в раз (диэлектрическая проницаемость среды), а модуль вектора , переходя через границу диэлектриков, скачко­образно изменяется. Поэтому для характеристики электростатического поля, кроме вектора напряженности , введен вектор электрического смещения , модуль которого не изменяется при переходе из одной диэлектрической среды в другую.

Вектор электрического смещения по определению: .

Используя то, что в вакууме , теорема Остроградского-Гаусса для электростатического поля может быть переформулирована следующим образом:

,

то есть поток вектора смещения электростатического поля через произ­вольную замкнутую поверхность S равен алгебраической сумме заключенных внутри этой поверхности зарядов.

В случае, если электрические заряды распределены внутри объёма V, ограни-ченного замкнутой поверхностью S, с некоторой объемной плотностью , теорема Остроградского-Гаусса для электростатического поля может быть переформулирована сдедующим образом:

.