- •Понятие информатики
- •Первое поколение эвм.
- •Второе поколение эвм.
- •Третье поколение эвм.
- •Четвертое поколение эвм.
- •Пятое поколение эвм.
- •Архитектура персонального компьютера
- •Экспоненциальное развитие компьютерной техники
- •Структура процессора.
- •Архитектура системы команд. Классификация процессоров (cisc и risc)
- •Характеристика процессоров на основе архитектуры pa-risc
- •Процессоры Intel и amd
- •Модельный ряд процессоров Intel.
- •Логические элементы. Вентили
- •1) Инверсия (логическое отрицание).
- •2) Дизъюнкция (логическое сложение).
- •3) Конъюнкция (логическое умножение).
- •Двоичное и шестнадцатиричное представление чисел
- •Ленточные библиотеки
- •Флэш-накопители
- •1. Usb Flash-накопители. Принцип устройства. Основные параметры. Преимущества и недостатки.
- •Raid -массивы
- •Повышение быстродействия
- •Примеры задающих и подчиненных устройств
- •Bios: Базовая система ввода-вывода.
- •Режимы управления вводом-выводом
- •Основные системные таблицы ввода-вывода
- •Клавиатура компьютера
- •Insert (вставлять) – переключает режимы вставки (новые символы вводятся посреди уже набранных, раздвигая их) и замены (старые символы замещаются новыми);
- •Представление чисел с плавающей точкой
- •0.111100111 Порядок 7
- •Языки ассемблера
- •Лекция №7
- •Эффективность виртуальной памяти
- •Сегментная организация виртуальной памяти
- •Страничная организация виртуальной памяти
- •Сегментно-страничный способ организации виртуальной памяти
- •Организация файловой системы
- •Программное обеспечение.
- •Лекция №8
Повышение быстродействия
езкое повышение быстродействия процессоров и переход на 32-разрядные многозадачные операционные системы существенно поднимают требования и к другим компонентам компьютера. Важнейшим из них является оперативная память. Возрастание внешних тактовых частот процессоров с 33-40 МГц, характерных для семейства 486 (486DX2-66/80 и 486DX4-100/120), до 50-66 МГц для Pentium (Pentium 75/90/100/120/133), требует прежде всего адекватного увеличения быстродействия подсистемы памяти. Поскольку в качестве оперативной используется относительно медленная динамическая память DRAM (DynamicRandomAccessMemory), главный способ увеличения пропускной способности основан на применении кэш-памяти. Кроме встроенной в процессор кэш-памяти первого уровня применяется и кэш-память второго уровня (внешняя), построенная на более быстродействующих, чем DRAM, микросхемах статической памяти SRAM (StaticRAM). Для высоких тактовых частот нужно увеличивать быстродействие SRAM. Кроме того, в многозадачном режиме эффективность работы кэш-памяти также может снижаться. Поэтому актуальной становится задача не только увеличения быстродействия кэш-памяти, но и ускорения непосредственного доступа к динамической памяти. Для решения этих проблем начинают использоваться новые типы статической и динамической памяти.
Требования к объемам памяти диктуются программным обеспечением. При использовании Windows оценить необходимое количество памяти можно на основе тестов Winstone, использующих наиболее популярные приложения Windows.
Лекция №5
Компьютерные шины
Шина - это несколько проводников, соединяющих различные устройства. Шины можно разделить на категории в соответствии с выполняемыми функциями. Они могут быть внутренними по отношению к процессору и служить для передачи данных в АЛУ и из АЛУ, а могут быть внешними по отношению к процессору и связывать процессор с памятью или устройствами ввода-вывода. Каждый тип шины обладает определенными свойствами, и к каждому из них предъявляются определенные требования. В этом и следующих подразделах мы сосредоточимся на шинах, которые связывают центральный процессор с памятью и устройствами ввода-вывода. В следующей главе мы подробно рассмотрим внутренние шины процессора.
Первые персональные компьютеры имели одну внешнюю шину, которая называлась системной. Она состояла из нескольких медных проводов (от 50 до 100), которые встраивались в материнскую плату. На материнской плате на одинаковых расстояниях друг от друга находились разъемы для микросхем памяти и устройств ввода-вывода. Современные персональные компьютеры обычно содержат специальную шину между центральным процессором и памятью и по крайней мере еще одну шину для устройств ввода-вывода.
Существует ряд широко используемых в компьютерном мире шин, например: Omnibus (PDP-8), Unibus (PDP-11), Multibus (8086), IBM PC (PC/XT), ISA (PC/AT), EISA (80386), MicroChannel (PC/2), PCI (различные персональные компьютеры), SCSI (различные персональные компьютеры и рабочие станции), Nubus (Macintosh), Universal Serial Bus (современные персональные компьютеры), FireWire (бытовая электроника), VME (оборудование в кабинетах физики) и Сатас (физика высоких энергий). Может быть, все стало бы намного проще, если бы все шины, кроме одной или двух, исчезли с поверхности земли. К сожалению, стандартизация в этой области кажется очень маловероятной, поскольку во все эти несовместимые системы уже вложено слишком много средств.
Давайте начнем с того, как работают шины. Некоторые устройства, соединенные с шиной, являются активными и могут инициировать передачу информации по шине, тогда как другие являются пассивными и ждут запросов. Активное устройство называется задающим, пассивное - подчиненным. Когда центральный процессор требует от контроллера диска считать или записать блок информации, центральный процессор действует как задающее устройство, а контроллер диска - как подчиненное. Контроллер диска может действовать как задающее устройство, когда он командует памяти принять слова, которые считал с диска. Несколько типичных комбинаций задающего и подчиненного устройств перечислены в табл. 3.3. Память ни при каких обстоятельствах не может быть задающим устройством.
