Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции поколения ЭВМ.doc
Скачиваний:
13
Добавлен:
01.05.2025
Размер:
1.27 Mб
Скачать

Логические элементы. Вентили

В основе построения компьютеров, а точнее аппаратного обеспечения, лежат так называемые вентили. Они представляют собой достаточно простые элементы, которые можно комбинировать между собой, создавая тем самым различные схемы. Одни схемы подходят для осуществления арифметических операций, а на основе других строят различную память ЭВМ.

Простейший вентиль представляет собой транзисторный инвертор, который преобразует низкое напряжение в высокое или наоборот (высокое в низкое). Это можно представить как преобразование логического нуля в логическую единицу или наоборот. Т.е. получаем вентиль НЕ.

Соединив пару транзисторов различным способом, получают вентили ИЛИ-НЕ и И-НЕ. Эти вентили принимают уже не один, а два и более входных сигнала. Выходной сигнал всегда один и зависит (выдает высокое или низкое напряжение) от входных сигналов. В случае вентиля ИЛИ-НЕ получить высокое напряжение (логическую единицу) можно только при условии низкого напряжении на всех входах. В случае вентиля И-НЕ все наоборот: логическая единица получается, если все входные сигналы будут нулевыми. Как видно, это обратно таким привычным логическим операциям как И и ИЛИ. Однако обычно используются вентили И-НЕ и ИЛИ-НЕ, т.к. их реализация проще: И-НЕ и ИЛИ-НЕ реализуются двумя транзисторами, тогда как логические И и ИЛИ тремя.

Выходной сигнал вентиля можно выражать как функцию от входных.

Транзистору требуется очень мало времени для переключения из одного состояния в другое (время переключения оценивается в наносекундах). И в этом одно из существенных преимуществ схем, построенных на их основе.

1) Инверсия (логическое отрицание).

Соответствующие выражения языка:

· Не «х»

· неверно, что «х»

_

f (x) = x

Построим таблицу истинности для инверсии. Изобразим прямоугольником множество всех значений. Круг будет содержать значения множества А (значит все что входит в прямоугольник, но не входит в круг будет множеством не А). Будем «бросать» точку в прямоугольник с множествами. Результаты попадания во множество А и не А внесем в левую таблицу. В правой таблице заменим попадание во множество А на х, попадание во множество не А на f, «нет» на 0, «да» на 1. Правая таблица и есть таблица истинности для инверсии.

А

не А

нет

да

да

нет

x

f

0

1

1

0


В ЭВМ операция инверсии физически реализуется стандартным логическим элементом «не» – инвертором.

2) Дизъюнкция (логическое сложение).

Соответствующие выражения языка:

· Х или Y

· Х или Y или оба

f (x,у) = x Ú у

Построим таблицу истинности для дизъюнкции. Изобразим прямоугольником множество всех значений. Первый круг будет содержать значения множества А, второй круг значения множества В. Множеством А или В будет объединение этих кругов (на рисунке закрашена серым цветом). Будем «бросать» точку в прямоугольник с множествами. Результаты попадания во множество А, В и А или В внесем в левую таблицу. В правой таблице заменим попадание во множество А на х, В на у, попадание во множество А или В на f, «нет» на 0, «да» на 1. Правая таблица и есть таблица истинности для дизъюнкции.

x

y

x Ú у

0

0

0

0

1

1

1

0

1

1

1

1


А

В

А или В

Нет

Нет

Нет

Нет

Да

Да

Да

Нет

Да

Да

Да

Да

В ЭВМ операция дизъюнкции физически реализуется стандартным логическим элементом «или» - дизъюнктером.