
- •Предисловие
- •Введение
- •1 Первичная обработка статистических данных.
- •1.1 Проверка данных
- •1.2 Группировка статистических данных
- •1.3 Графическое представление статистических данных
- •1.4 Задача 1. Первичная обработка
- •2 Точечные оценки параметров распределения.
- •2.1 Несгруппированные статистические данные
- •2.2 Статистические дискретный и интервальный ряды
- •2.3 Метод “условного нуля”
- •2.2.4 Задача 1. Точечные оценки
- •Выборочное среднее квадратическое отклонение равно
- •Выборочное среднее квадратическое отклонение равно
- •3 Интервальные оценки параметров распределения
- •3.1 Доверительные интервалы для некоторых параметров распределения
- •3.2 Примеры построения доверительных интервалов
- •4 Проверка статистических гипотез
- •4.1 Сравнение двух дисперсий нормально распределенных генеральных совокупностей
- •4.2 Сравнение двух математических ожиданий нормально распределенных генеральных совокупностей, дисперсии которых неизвестны и одинаковы
- •4.3 Сравнение двух вероятностей биномиальных распределений
- •4.4 Проверка гипотезы о виде распределения генеральной совокупности по критерию Пирсона
- •4.5 Проверка гипотезы о виде распределения генеральной совокупности по критерию Колмогорова-Смирнова
- •4.6 Примеры
- •Выборочное среднее квадратическое отклонение равно
- •5 Элементы корреляционного и регрессионного анализа
- •5.1 Корреляционное поле
- •5.2 Эмпирическая ломаная регрессии
- •5.3 Эмпирический коэффициент детерминации и эмпирическое корреляционное отношение
- •5.4 Линейная регрессия
- •5.5 Проверка коэффициента корреляции на значимость.
- •5.6 Теоретический коэффициент детерминации и теоретическое корреляционное отношение
- •5.7 Нелинейная корреляция
- •5.8 Множественная регрессия
- •5.9 Оценка погрешности модели
- •5.10 Задача 1. Установления корреляционной зависимости
- •Реализация статистических расчетов при помощи компьютера
- •6.1 Табличный процессор Microsoft Excel
- •6.2 Пакет программ statistica
- •Задачи для самостоятельного решения
- •Вариант № 1
- •Вариант № 2
- •Вариант № 3
- •Вариант № 4
- •Вариант № 5
- •Вариант № 6
- •Вариант № 7
- •Вариант № 8
- •Вариант № 9
- •Вариант № 10
- •Вариант № 11
- •Вариант № 12
- •Вариант № 13
- •Вариант № 14
- •Вариант № 15
- •Вариант № 16
- •Вариант № 17
- •Вариант № 18
- •Вариант № 19
- •Вариант № 20
- •Вариант № 21
- •Вариант № 22
- •Вариант № 23
- •Вариант № 24
- •Вариант № 25
- •Вариант № 26
- •Вариант № 27
- •Вариант № 28
- •Вариант № 29
- •Вариант № 30
- •8. Контрольные задания по статистике для студентов дневной формы обучения
- •Основные вопросы теории математической статистики
- •Типы отборов и виды выборок.
- •8.2 Варианты контрольных работ Вариант № 1
- •Вариант № 2
- •Вариант № 3
- •Вариант № 4
- •Вариант № 5
- •Вариант № 6
- •Вариант № 7
- •Вариант № 8
- •Вариант № 9
- •Вариант № 10
- •Семестровые задания по статистике
- •9.1 Условие семестрового задания для студентов дневной формы обучения
- •9.2 Условие контрольной работы по статистике для студентов заочной формы обучения
- •9.3 Варианты заданий вариант 1
- •Вариант 2
- •Вариант 3
- •Пример выполнения контрольной работы по статистике для студентов заочной формы обучения
- •Выборочное среднее квадратическое отклонение равно
- •Выборочное среднее квадратическое отклонение равно
- •Приложения !!!! в отдельном файле “ Приложения” Рекомендуемая литература
Семестровые задания по статистике
В этом разделе читателям предлагается попробовать свои силы в довольно большом статистическом исследовании, связанном с установлением корреляционных зависимостей между некоторыми факторами, играющих важную роль в горном деле. Данные, используемые в заданиях, являются выборками из фактических результатов, полученных в процессе научных исследований. Для студентов дневной и заочной формы обучения прелагается выполнять работу в различных объемах, но для одних и тех же выборок.
9.1 Условие семестрового задания для студентов дневной формы обучения
Для каждого варианта статистических данных Х и У выполнить расчеты в следующей последовательности.
1. Провести первичную обработку статистических данных (включая проверку данных). Результаты представить в виде таблиц. Построить статистические ряды для каждого признака.
2. Построить гистограмму, полигон относительных частот и кумуляту по каждому признаку.
3.1 Используя метод “условного нуля”, определить числовые характеристики выборок по каждому признаку: выборочное среднее; выборочную дисперсию; исправленную выборочную дисперсию; исправленное выборочное среднее квадратическое отклонение. Дать объяснение полученным результатам.
При помощи табличного процессора Excel и соответствующих формул статистики произвести расчет следующих точечных выборочных параметров выборки: выборочное среднее; выборочную дисперсию; исправленную выборочную дисперсию; исправленное выборочное среднее квадратическое отклонение; выборочные асимметрию и эксцесс, моду и медиану.
4. Для каждого признака построить 99% или 95% доверительные интервалы для оценки генеральных средних, генеральных средних квадратических отклонений. Дать объяснение полученным результатам.
5. При уровне значимости проверить гипотезы о нормальных законах распределения генеральных совокупностей по каждому признаку. Для одного из признаков Х или У подобрать наиболее подходящий закон распределения.
6. Для признаков X и Y построить корреляционное поле, эмпирическую ломанную регрессии и дать предварительный анализ зависимости между признаками.
7. Для признаков X и Y вычислить эмпирический коэффициент детерминации и эмпирическое корреляционное отношение.
8. Определить параметры уравнения линейной регрессии.
9. Определить коэффициент корреляции и проверить его на значимость. Сделать вывод о наличии линейной связи между признаками.
10. Составить нелинейное уравнение регрессии, выбрав подходящий тип нелинейности.
11. Построить полученные линии регрессии в одной системе координат.
12. Для всех моделей рассчитать теоретический коэффициент детерминации и теоретическое корреляционное отношение; среднюю квадратическую погрешность уравнения; среднюю относительную погрешность аппроксимации.
13. Используя лучшее из полученных уравнений регрессии дать точечный прогноз и построить доверительный интервал для оценки прогнозного индивидуального значения У при заданном значении признака X .
9.2 Условие контрольной работы по статистике для студентов заочной формы обучения
Для статистических данных в соответствии с вариантом выполнить расчет в следующей последовательности:
Провести первичную обработку статистических данных. Результаты представить в виде таблиц. Построить статистические ряды для каждого признака.
Построить гистограмму и полигон частот (или относительных частот) по каждому признаку.
Используя метод “условного нуля”, определить числовые характеристики выборок по каждому признаку: выборочное среднее; выборочную дисперсию; исправленную выборочную дисперсию; исправленное выборочное среднее квадратическое отклонение. Дать объяснение результатам.
При заданном уровне значимости проверить гипотезу о нормальном законе распределения генеральных совокупностей по признаку Х или признаку У.
Для признаков X и Y построить корреляционное поле и дать предварительный анализ зависимости между признаками.
Определить параметры уравнения линейной регрессии.
Определить коэффициент корреляции и проверить его значимость. Найти коэффициент детерминации. Сделать вывод о наличии связи между признаками, используя шкалу Чеддока.
Построить полученную линию регрессии.
Определить абсолютную и относительную среднеквадратическую погрешность уравнения регрессии.
Используя полученное уравнение регрессии, дать точечный прогноз по признаку У при заданном значении признака X .