
- •1.Призначення курсу. Основні вимоги до електричних апаратів
- •1.1 Предмет курсу, його роль і місце серед інших дисциплін
- •1.2 Класифікація електричних апаратів
- •1.3 Вимоги до електричних апаратів
- •1.3.1 Загальні поняття про вимоги до електричних апаратів
- •1.3.2. Основні вимоги до електричних апаратів
- •1.4 Основні позначення апаратів та елементів в електричних системах
- •2. Електродинамічні зусилля в електричних апаратах та їх методи розрахунку
- •2.1 Загальні відомості про електродинамічну стійкість
- •2.2 Основні фізичні поняття, формули, закони, необхідні для розрахунку електродинамічних зусиль електричних апаратів
- •2.3 Електродинамічні сили, що діють між провідниками із струмом. Метод розрахунку електродинамічних зусиль на основі законів Ампера і Біо-Савара-Лапласа
- •Метод енергетичного балансу провідників із струмом
- •2.5 Електродинамічні зусилля при різних формах провідників
- •2.6 Зусилля та моменти, що діють на взаємоперпендикулярні провідники
- •3. Електродинамічні сили в різних умовах роботи, характерних для електричних апаратів
- •3.1 Практичне застосування метода енергетичного балансу
- •3.2 Електродинамічні сили в місці контакту двох провідників з різними діаметрами або в місці зміни перерізу провідника
- •3.3 Зусилля при наявності феромагнетика (сили взаємодії між провідником із струмом та феромагнетичною масою)
- •3.4 Електродинамічні сили при змінному струмі
- •3.4.1 Однофазне коло
- •3.4.2Трифазна сітка; сили, що виникають між провідниками різних фаз
- •3.5 Механічний резонанс
- •3.6 Процес вмикання електричного кола змінного струму. Ударний коефіцієнт
- •3.7 Додаток
- •3.7.2 Розрахунок електродинамічної стійкості шин
- •4. Основи теплових розрахунків
- •4.1 Втрати в електричних апаратах
- •4.2 Втрати в феромагнетиках, які не несуть струм
- •4.3 Способи передачі тепла в середині та з поверхні нагрітих тіл. Коефіцієнт тепловіддачі
- •5. Теплопередача і нагрів провідників при різних режимах роботи
- •5.1 Стаціонарний режим нагрівання
- •5.2 Номінальна сила струму для провідника в повітрі
- •5.3. Термічна дія струму короткого замикання. Термічна стійкість провідників
- •5.4 Тривалі і короткочасні допустимі температури
- •5.5 Допустимий періодично повторюваний режим нагрівання-охолодження
- •5.6 Розподіл температури в котушках та приклади допустимих температур провідників із різних матеріалів
- •6. Електричні контакти
- •6.1 Загальні відомості
- •6.2 Фізичні явища в контактах
- •6.3 Матеріали контактів. Вимоги до них
- •6.4 Температура площадки контактування. Контакти в режимі проходження тривалого струму
- •6.5 Розбірні контакти в режимі короткого замикання
- •7.1 Контакти в режимі короткого замикання. Розмикання, замикання та зварювання контактів
- •7.1.1 Основні види сил
- •7.2 Зварювання контактів
- •7.3 Зношування контактів при їх розмиканні
- •7.3.1 Електрична ерозія
- •7.3.2 Ерозія контактів при малих струмах
- •7.3.3 Зношування контактів при великих струмах та боротьба із ерозією
- •7.4 Конструктивна форма контактів і контактних з’єднань.
- •7.4.1 Найважливіші параметри контактних конструкцій
- •7.4.2 Конструкції контактних вузлів і їх типи
- •7.5 Способи компенсації електродинамічних сил в контактах
- •7.6 Задача
- •8. Вимикання електричного кола постійного і змінного струму
- •8.1 Загальна характеристика вимикання електричних кіл. Відновлювана напруга та відновлювана міцність. Умова вимикання кола апарату
- •8.2 Стадії в міжконтактному проміжку при вимиканні кола. Дуга і її властивості
- •8.3 Статична і динамічна вольтамперна характеристика (вах) дуги. Умови стабільного горіння та гасіння дуги
- •9. Відновлювана міцність та особливості горіння дуги
- •9.1 Відновлювана міцність та її стадії відновлення.
- •9.2 Загальні характеристики дуги
- •9.2.1 Електрична міцність. Теплова стала дуги. Перенапруга. Швидкість відновлення напруги
- •9.2.2 Опір і потужність дуги. Енергія, що виділяється в дузі
- •9.3. Особливості горіння і гасіння дуги змінного струму при вимиканні активного навантаження
- •9.4 Вимикання індуктивного кола змінного струму
- •9.4 Вимикання змінного струму трьохфазної сітки
- •10. Дугогасіння. Дугогасильні решітки та камери
- •10.1 Загальні принципи гасіння дуги
- •10.2 Гасіння відкритої дуги в магнітному полі. Швидкість руху дуги на різних ділянках
- •10.3 Повздовжня щілина. Щілина з декількома перегородками
- •10.4 Системи магнітного дуття
- •10.5 Дугогасильна решітка
- •10.6 Гасіння дуги в маслі
- •10.7 Розрахункові формули дугогасильної системи
- •11. Електричні апарати низьковольтних схем.
- •11.1 Загальні відомості про апарати автоматичного дистанційного управління
- •11.2 Рубильники і перемикачі. Пакетні вимикачі
- •11.3 Командоапарати
- •12.1. Контактори та їх вибір
- •12.2 Реле. Геркони
- •12.3 Вибір реле
- •13.Запобіжники
- •13.1 Призначення та основні елементи запобіжника
- •13.2 Плавка вставка при тривалому часі навантаження. Часово-струмова характеристика запобіжника
- •13.3 Металургійний ефект
- •13.4. Нагрівання плавкої вставки при короткому замиканні
- •14. Вибір та конструкція запобіжників
- •14.1 Вибір запобіжників
- •14.2 Селективний метод захисту кіл
- •14.3 Конструкція запобіжників (загальні відомості)
- •14.4 Захист напівпровідникових приладів (нп)
- •15. Високовольтні запобіжники (ввз) Швидкодіючі запобіжники
- •15.1 Призначення (ввз), вимоги до ввз
- •15.2 Конструкції запобіжників високої напруги.
- •15.2.1 Запобіжники із дрібнозернистим наповнювачем серії пк і пкт
- •15.2.2 Запобіжники, що стріляють (з автогазовим і рідким гасінням). Патрон типу псн – 35
- •15.2.3 Вибір запобіжників високої напруги
- •15.3 Запобіжники із рідкометалічним контактом
- •15.4 Швидкодіючі запобіжники для захисту напівпровідникових приладів
- •15.5 Вибір швидкодіючих запобіжників для захисту напівпровідникових приладів
- •16. Автоматичні повітряні вимикачі (автомати)
- •16.1 Призначення автоматів. Аварійні режими
- •16.2 Основні види автоматів та їх основні параметри.
- •16.2.1 Різновидності автоматів та їх характеристики
- •16.2.2 Основні вузли і параметри автоматів
- •16.3 Струмоведуча система автоматів
- •16.4 Дугогасильні системи
- •17. Електромеханіка автоматів
- •17.1 Приводи та механізми установочних і універсальних апаратів
- •17.2 Розчеплювачі автоматів
- •17.3 Час вимикання автоматів
- •17.4 Напівпровідникові розчеплювачі
- •17.5 Вимикачі гасіння магнітного поля
- •18. Автоматичні вимикачі загально-промислового застосування
- •18.1 Вибір і характеристики автоматичних вимикачів.
- •18.2 Загальна характеристика серійних автоматів
- •18.3 Принцип роботи автомата а3100 та а3700
- •18.4 Швидкодіючийир автомат . Ваб – 20м
- •19.Роз’єднувачі, відокремлювачі, короткозамикачі
- •19.1 Роз’єднувачі, їх призначення. Схеми вимикання
- •19.2 Вимоги до роз’єднувачів
- •19.3 Вибір роз’єднувачів
- •19.4 Конструкції роз’єднувачів
- •19.5. Відокремлювачі і короткозамикачі.
- •20. Вимикачі змінного струму високої напруги
- •20.1. Параметри високовольтних вимикачів
- •20.2. Номінальний струм вимикання. Номінальна потужність
- •20.3. Автоматичне повторне вмикання вимикача (апв)
- •20.4 Вимоги до вимикачів та їх класифікація
- •21. Особливості високовольтних вимикачів
- •21.1 Масляні вимикачі
- •21.1.1 Принцип роботи масляного вимикача
- •21.1.2Особливості конструкції масляних бакових і маломасляних вимикачів
- •21.2 Повітряні вимикачі
- •21.2.1 Особливості повітряних вимикачів
- •21.2.2 Функціональна схема полюса генераторного вимикача із повітрянаповненим відокремлювачем
- •21.3 Електромагнітні та вакуумні вимикачі.
- •21.3.1 Електромагнітні вимикачі
- •21.3.2 Вакуумні вимикачі
- •22. Реактори, конструкція і основні параметри.
- •22.1 Реактори. Відносний опір генератора та реактора
- •22.2 Номінальні напруга та струм реактора
- •22.3 Конструкція реактора
- •22.4 Розрядники
- •23.Трансформатори струму
- •23.1 Призначення, схема вмикання, основні параметри трансформаторів струму
- •23.2 Похибки трансформаторів в залежності від різних факторів
- •23.3 Особливості роботи трансформаторів струму
- •23.4 Особливості конструкції трансформаторів
- •24. Методика розрахунків та вибору електричних апаратів
- •24.1 Основні принципи проектування електричних апаратів
- •24.2 Струмоведучі системи (свс) електричних апаратів
- •24.3 Граничний струм контактних систем електричних апаратів
- •24.4 Розрахункові формули дугогасильних систем
- •Список джерел інформації
19.2 Вимоги до роз’єднувачів
Вимоги до роз’єднувачів зв’язані з їх умовами роботи та призначенням. Вимикаюча здатність роз’єднувачів визначається їх контактною системою і механізмом приводу.
Вимоги полягають у наступному:
контактна система повинна надійно пропускати номінальний струм скільки завгодно тривалий час;
контактна система, працюючи в важких умовах впливу вологи, пилу, льоду, води, повинна мати необхідну динамічну і термічну стійкість;
роз’єднувач і механізм його приводу повинні надійно утримуватись у ввімкнутому положенні при протіканні струму короткого замикання. Те саме відноситься до вимкненого положення. Рухомий контакт у вимкненому положенні повинен бути надійно зафіксований, інакше можуть статися аварії з жертвами;
у зв’язку з тим, що роз’єднувач – апарат безпеки, проміжок між розімкнутими контактами має мати підвищену електричну міцність;
привод роз’єднувача доцільно блокувати із вимикачем. Операції із роз’єднувачем можуть проводитись лише після того, як вимикач вимкнено.
По характеру виконання блокування може бути:
механічним;
механічно замковим;
електромагнітно-замковим.
19.3 Вибір роз’єднувачів
номінальна напруга роз’єднувача повинна відповідати номінальній напрузі сітки;
найбільший струм тривалого навантаження споживача не повинен перевищувати струму роз’єднувача;
ударний струм короткого замикання в місці установки роз’єднувача не повинен перевищувати допустиму амплітуду ударного струму короткого замикання роз’єднувача;
повинна виконуватись умова:
– струм
термічної стійкості роз’єднувача,
гарантований заводом;
– час,
на протязі якого він може проходити
через роз’єднувач;
– струм
короткого замикання;
– час
короткого замикання (0.3÷0.5 с.).
5) зовнішні умови роботи роз’єднувача (вітер, температура, вологість) повинні відповідати умовам експлуатації роз’єднувача.
19.4 Конструкції роз’єднувачів
Конструкції роз’єднувачів – різноманітні, в залежності від того, при яких напругах і струмах сітки він повинен працювати. Але обов’язковими частинами в роз’єднувачі є:
п
олюс роз’єднувача, який складається з нерухомих і рухомих контактів (ножів) (кількість ножів може доходити до 8 штук), що кріпляться на ізоляторах.
опорна плита (рама).
привід.
Бувають контакти з вертикальним розміщенням і з горизонтальним. Контакти повинні надійно працювати при всіх типах режимів і крім нагріву, динамічної і термічної стійкості, для роз’єднувачів дуже важливим є механічна і електрична стійкість ізоляції – один із головних параметрів розрахунку роз’єднувачів.
В
роз’єднувачах застосовують
високі контактні натискання. Коли
роз’єднувачі важкі, то для керування
застосовують великі електродвигуни і
пневматичні приводи. Найбільш
розповсюджений, при струмах
А ручний червячний привід. При малих
струмах до 35 кВ можна керувати вручну
ізоляційною штангою. При напругах до
20 кВ (для внутрішніх установок, на які
не впливає атмосфера), розповсюджені
роз’єднувачі рублячого типу (рис. 19.5).
Один із засобів забезпечення надійного прижиму контакту – це використання електро-динамічних сил, що виникають при проходженні вимикаючих струмів через рухомі і нерухомі контакти. При КЗ електро-динамічна сила прижимає шини (1) до контакту (2).
Застосовують, крім того, комбіновані контакти.
Для зовнішнього використання служать роз’єднувачі, що мають систему контактів таку саму, як і відокремлювачі (рис 19.4).
1 – ніж контактний
В останні роки на високовольтних підстанціях застосовують відокремлювачі і короткозамикачі замість вхідних вимикачів. Така заміна спрощує устаткування, одночасно не погрішуючи надійності роботи підстанції.