Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Електричны апарати КЛ.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
5.71 Mб
Скачать

7.3 Зношування контактів при їх розмиканні

7.3.1 Електрична ерозія

Під зношуванням контактів розуміють руйнування їх поверхні, що приводить до зміни їх форми, розміру, маси.

Зношування поділяють по виду ерозій на:

  1. хімічну (корозія) ерозію (окислення, утворення плівок на електродах хімічних з’єднань);

  2. механічну ерозію (механічне руйнування поверхні контактів);

  3. електричну ерозію (перенос матеріалу з одного контакту на інший при проходженні електричного струму).

Електрична ерозія особливо небезпечна при постійному струмі. Напрямок переносу речовини в цьому випадку є постійним, що веде до швидкого виходу контактів із ладу. Якщо матеріал переноситься з аноду на катод, то така ерозія називається анодною, а якщо навпаки, то катодною.

Міра ерозії – втрата маси або об’єму контакта.

Схема процесу виглядає так:

В процесі розмикання контактів контактне натискання зменшується, перехідний опір збільшується, Fк<; Rк> і за рахунок цього зростає температура точок дотику. Площадка дотику сильно розігрівається, до температури плавлення, утворюється між контактами місток із рідкого металу. При подальшому русі контактів місток обривається і виникає дуговий або тліючий розряд. Якщо < (наприклад для міді < 0.43 A) при U=270÷330 В, виникає тліючий розряд або іскра, для вольфраму розряд спостерігається при <0.9 А.

7.3.2 Ерозія контактів при малих струмах

Ерозія контактів при малих струмах обумовлена тим, що руйнування рідкого контактного перешийка відбувається не всередині, а з одного із країв контакту. Як показують досліди розрив розплавленої маси відбувається ближче до аноду, як правило. Внаслідок цього більше зношується анод.

Величина ерозії пропорційна кількості електрики, що проходить через контакти за час іскри і залежить від властивостей матеріалу контактів.

Зниження ерозії досягають:

А. застосування ерозійно-стійких матеріалів;

б) шунтуванням контактів іскрогасящими -колами. В цьому випадку частина енергії кола іде на заряд конденсатора. Тривалість іскрового розряду суттєво зменшується. Однак, при великих ємностях, при замиканні може відбутись в такому випадку розряд конденсаторів на контактах (що ще не замкнуті, але наблизились між собою) і, як наслідок, зварювання контактів.

Для боротьби з ерозією при малих струмах застосовують:

  1. використання дугостійких матеріалів, щоб не допустити розвитку дуги в процесі розмикання контактів;

  2. вмикання паралельно до контакту конденсатора ( при цьому частина енергії відводиться на конденсатор).

7.3.3 Зношування контактів при великих струмах та боротьба із ерозією

Зношування контактів при великих струмах відбувається як при їх замиканні, так і при їх розмиканні, і залежить від багатьох змінних факторів. До сьогодні немає аналітичного виразу для розрахунку величини зношування.

При орієнтовних розрахунках треба пам’ятати, що зношування контактів пропорційне величині струму. При І>5 А хороші результати дає формула Кузнєцова (основним параметром зношуваного контакту є маса втраченого контакту):

де – маса зношування контакта;

– сила струму вимикання;

– кількість вмикань – вимикань контакту;

– коефіцієнт зношування ((1 – 200)·10-6 Г/А2).

При струмах І ≤ 5 А строк служби контактів визначається формулою:

де – об’єм контакту, призначений на зношування;

– густина матеріалу контакту;

– час гасіння дуги;

– коефіцієнт зношування (К~(1 – 20)·10-9 кг/Кл.

Для боротьби із ерозією на струми від 1А до 600А необхідно:

  1. скорочувати час горіння дуги за допомогою дугогасящих пристроїв;

  2. боротись із тремтінням контактів, що виникають при замиканні. Це досягається за допомогою зменшення маси рухомих контактів і швидкості їх замикання, а також збільшенням початкового натискання і жорсткості пружини. Останнє приведе до росту протидії відкиданню контактів, зменшить амплітуду відхилень.

  3. застосування (як і у випадку малих струмів) дугостійких контактів.