
- •1.Призначення курсу. Основні вимоги до електричних апаратів
- •1.1 Предмет курсу, його роль і місце серед інших дисциплін
- •1.2 Класифікація електричних апаратів
- •1.3 Вимоги до електричних апаратів
- •1.3.1 Загальні поняття про вимоги до електричних апаратів
- •1.3.2. Основні вимоги до електричних апаратів
- •1.4 Основні позначення апаратів та елементів в електричних системах
- •2. Електродинамічні зусилля в електричних апаратах та їх методи розрахунку
- •2.1 Загальні відомості про електродинамічну стійкість
- •2.2 Основні фізичні поняття, формули, закони, необхідні для розрахунку електродинамічних зусиль електричних апаратів
- •2.3 Електродинамічні сили, що діють між провідниками із струмом. Метод розрахунку електродинамічних зусиль на основі законів Ампера і Біо-Савара-Лапласа
- •Метод енергетичного балансу провідників із струмом
- •2.5 Електродинамічні зусилля при різних формах провідників
- •2.6 Зусилля та моменти, що діють на взаємоперпендикулярні провідники
- •3. Електродинамічні сили в різних умовах роботи, характерних для електричних апаратів
- •3.1 Практичне застосування метода енергетичного балансу
- •3.2 Електродинамічні сили в місці контакту двох провідників з різними діаметрами або в місці зміни перерізу провідника
- •3.3 Зусилля при наявності феромагнетика (сили взаємодії між провідником із струмом та феромагнетичною масою)
- •3.4 Електродинамічні сили при змінному струмі
- •3.4.1 Однофазне коло
- •3.4.2Трифазна сітка; сили, що виникають між провідниками різних фаз
- •3.5 Механічний резонанс
- •3.6 Процес вмикання електричного кола змінного струму. Ударний коефіцієнт
- •3.7 Додаток
- •3.7.2 Розрахунок електродинамічної стійкості шин
- •4. Основи теплових розрахунків
- •4.1 Втрати в електричних апаратах
- •4.2 Втрати в феромагнетиках, які не несуть струм
- •4.3 Способи передачі тепла в середині та з поверхні нагрітих тіл. Коефіцієнт тепловіддачі
- •5. Теплопередача і нагрів провідників при різних режимах роботи
- •5.1 Стаціонарний режим нагрівання
- •5.2 Номінальна сила струму для провідника в повітрі
- •5.3. Термічна дія струму короткого замикання. Термічна стійкість провідників
- •5.4 Тривалі і короткочасні допустимі температури
- •5.5 Допустимий періодично повторюваний режим нагрівання-охолодження
- •5.6 Розподіл температури в котушках та приклади допустимих температур провідників із різних матеріалів
- •6. Електричні контакти
- •6.1 Загальні відомості
- •6.2 Фізичні явища в контактах
- •6.3 Матеріали контактів. Вимоги до них
- •6.4 Температура площадки контактування. Контакти в режимі проходження тривалого струму
- •6.5 Розбірні контакти в режимі короткого замикання
- •7.1 Контакти в режимі короткого замикання. Розмикання, замикання та зварювання контактів
- •7.1.1 Основні види сил
- •7.2 Зварювання контактів
- •7.3 Зношування контактів при їх розмиканні
- •7.3.1 Електрична ерозія
- •7.3.2 Ерозія контактів при малих струмах
- •7.3.3 Зношування контактів при великих струмах та боротьба із ерозією
- •7.4 Конструктивна форма контактів і контактних з’єднань.
- •7.4.1 Найважливіші параметри контактних конструкцій
- •7.4.2 Конструкції контактних вузлів і їх типи
- •7.5 Способи компенсації електродинамічних сил в контактах
- •7.6 Задача
- •8. Вимикання електричного кола постійного і змінного струму
- •8.1 Загальна характеристика вимикання електричних кіл. Відновлювана напруга та відновлювана міцність. Умова вимикання кола апарату
- •8.2 Стадії в міжконтактному проміжку при вимиканні кола. Дуга і її властивості
- •8.3 Статична і динамічна вольтамперна характеристика (вах) дуги. Умови стабільного горіння та гасіння дуги
- •9. Відновлювана міцність та особливості горіння дуги
- •9.1 Відновлювана міцність та її стадії відновлення.
- •9.2 Загальні характеристики дуги
- •9.2.1 Електрична міцність. Теплова стала дуги. Перенапруга. Швидкість відновлення напруги
- •9.2.2 Опір і потужність дуги. Енергія, що виділяється в дузі
- •9.3. Особливості горіння і гасіння дуги змінного струму при вимиканні активного навантаження
- •9.4 Вимикання індуктивного кола змінного струму
- •9.4 Вимикання змінного струму трьохфазної сітки
- •10. Дугогасіння. Дугогасильні решітки та камери
- •10.1 Загальні принципи гасіння дуги
- •10.2 Гасіння відкритої дуги в магнітному полі. Швидкість руху дуги на різних ділянках
- •10.3 Повздовжня щілина. Щілина з декількома перегородками
- •10.4 Системи магнітного дуття
- •10.5 Дугогасильна решітка
- •10.6 Гасіння дуги в маслі
- •10.7 Розрахункові формули дугогасильної системи
- •11. Електричні апарати низьковольтних схем.
- •11.1 Загальні відомості про апарати автоматичного дистанційного управління
- •11.2 Рубильники і перемикачі. Пакетні вимикачі
- •11.3 Командоапарати
- •12.1. Контактори та їх вибір
- •12.2 Реле. Геркони
- •12.3 Вибір реле
- •13.Запобіжники
- •13.1 Призначення та основні елементи запобіжника
- •13.2 Плавка вставка при тривалому часі навантаження. Часово-струмова характеристика запобіжника
- •13.3 Металургійний ефект
- •13.4. Нагрівання плавкої вставки при короткому замиканні
- •14. Вибір та конструкція запобіжників
- •14.1 Вибір запобіжників
- •14.2 Селективний метод захисту кіл
- •14.3 Конструкція запобіжників (загальні відомості)
- •14.4 Захист напівпровідникових приладів (нп)
- •15. Високовольтні запобіжники (ввз) Швидкодіючі запобіжники
- •15.1 Призначення (ввз), вимоги до ввз
- •15.2 Конструкції запобіжників високої напруги.
- •15.2.1 Запобіжники із дрібнозернистим наповнювачем серії пк і пкт
- •15.2.2 Запобіжники, що стріляють (з автогазовим і рідким гасінням). Патрон типу псн – 35
- •15.2.3 Вибір запобіжників високої напруги
- •15.3 Запобіжники із рідкометалічним контактом
- •15.4 Швидкодіючі запобіжники для захисту напівпровідникових приладів
- •15.5 Вибір швидкодіючих запобіжників для захисту напівпровідникових приладів
- •16. Автоматичні повітряні вимикачі (автомати)
- •16.1 Призначення автоматів. Аварійні режими
- •16.2 Основні види автоматів та їх основні параметри.
- •16.2.1 Різновидності автоматів та їх характеристики
- •16.2.2 Основні вузли і параметри автоматів
- •16.3 Струмоведуча система автоматів
- •16.4 Дугогасильні системи
- •17. Електромеханіка автоматів
- •17.1 Приводи та механізми установочних і універсальних апаратів
- •17.2 Розчеплювачі автоматів
- •17.3 Час вимикання автоматів
- •17.4 Напівпровідникові розчеплювачі
- •17.5 Вимикачі гасіння магнітного поля
- •18. Автоматичні вимикачі загально-промислового застосування
- •18.1 Вибір і характеристики автоматичних вимикачів.
- •18.2 Загальна характеристика серійних автоматів
- •18.3 Принцип роботи автомата а3100 та а3700
- •18.4 Швидкодіючийир автомат . Ваб – 20м
- •19.Роз’єднувачі, відокремлювачі, короткозамикачі
- •19.1 Роз’єднувачі, їх призначення. Схеми вимикання
- •19.2 Вимоги до роз’єднувачів
- •19.3 Вибір роз’єднувачів
- •19.4 Конструкції роз’єднувачів
- •19.5. Відокремлювачі і короткозамикачі.
- •20. Вимикачі змінного струму високої напруги
- •20.1. Параметри високовольтних вимикачів
- •20.2. Номінальний струм вимикання. Номінальна потужність
- •20.3. Автоматичне повторне вмикання вимикача (апв)
- •20.4 Вимоги до вимикачів та їх класифікація
- •21. Особливості високовольтних вимикачів
- •21.1 Масляні вимикачі
- •21.1.1 Принцип роботи масляного вимикача
- •21.1.2Особливості конструкції масляних бакових і маломасляних вимикачів
- •21.2 Повітряні вимикачі
- •21.2.1 Особливості повітряних вимикачів
- •21.2.2 Функціональна схема полюса генераторного вимикача із повітрянаповненим відокремлювачем
- •21.3 Електромагнітні та вакуумні вимикачі.
- •21.3.1 Електромагнітні вимикачі
- •21.3.2 Вакуумні вимикачі
- •22. Реактори, конструкція і основні параметри.
- •22.1 Реактори. Відносний опір генератора та реактора
- •22.2 Номінальні напруга та струм реактора
- •22.3 Конструкція реактора
- •22.4 Розрядники
- •23.Трансформатори струму
- •23.1 Призначення, схема вмикання, основні параметри трансформаторів струму
- •23.2 Похибки трансформаторів в залежності від різних факторів
- •23.3 Особливості роботи трансформаторів струму
- •23.4 Особливості конструкції трансформаторів
- •24. Методика розрахунків та вибору електричних апаратів
- •24.1 Основні принципи проектування електричних апаратів
- •24.2 Струмоведучі системи (свс) електричних апаратів
- •24.3 Граничний струм контактних систем електричних апаратів
- •24.4 Розрахункові формули дугогасильних систем
- •Список джерел інформації
6. Електричні контакти
6.1 Загальні відомості
Електричним контактом називається місце переходу струму із однієї струмоведучої деталі в іншу. Деталь, що здійснює контакт називається контакт-деталлю. Існування електричного контакту називається контактуванням. Контакти поділяються на три основні групи:
а) розбірні;
б) комутуючі;
в) ковзаючі.
Розбірні контакти – це такі контакти, що в процесі роботи не переміщаються, а лишаються надійно скріпленими. Наприклад, болтове з’єднання шин, приєднання провідників зажимами („крокодил”).
Комутуючі контакти – ті, що в процесі роботи замикають, розмикають, перемикають коло. Наприклад, контакти вимикачів, контакторів, рубильників.
Ковзаючі
контакти –
це різновидність комутуючих контактів.
При переміщенні однієї деталі контакту
відносно другої, контакт не порушується.
Наприклад, контакт в реостаті, шарнірні
контакти, щіточні контакти (електродвигуни).
Контакти поділяються по своїх конструкціях,
призначенню, допустимих напругах і
струмах, а також по матеріалу, з якого
вони виготовлені.
Сфера-сфера
1 точка контактування
точкові;
Рис. 6.1
лінійні;
п
оверхневі.
Точкові контакти застосовують для малих струмів (до 20 А).
Розміри
площадок контактування пропорційні
силі, що стискає деталі і залежать від
опору зминання матеріалу деталей. Це
випливає із наступного: сила контактного
натискання
і
– напруження тимчасового опору зминанню
при пластичній деформації, зв’язані
між собою співвідношенням
де
– площа, то
→
(6.1)
В зоні переходу струму із 1-го провідника в інший має місце більший електричний опір, що називається перехідним. По природі – це звичайний опір металічного провідника, тільки цей провідник – мікроскопічний „бугорок”, в якому і відбувається контактування.
Перехідний
опір (
)
можна уявити собі як місце звуження
перерізу матеріалу і різкого підвищення
густини струму, в порівнянні з густиною
стуму в тілі контакту (див. рис. 6.1).
Експериментально встановлено, що існує зв’язок:
,
де
- деяка величина, що залежить від матеріалу
обробки і стану контактної поверхні.
- сила натискання;
n – показник, що характеризує кількість точок контактування.
Із збільшенням їх кількості контактний опір зменшується. Встановлено, що n=0.5 для одноточкового контакту, n=0.7÷1 для лінійного контакту, n=1 для поверхневого контакту.
дуже сильно залежить від степені окислення. Для неокислених має такі значення (в Ом/Н): мідь – 1.0·10-3 латунь – 6.7·10-3
алюміній – 1.6·10-3 сталь – 7.6·10-3
6.2 Фізичні явища в контактах
К
онтакт
складається із об’ємної частини і
поверхневої, яка безпосередньо знаходиться
між поверхнями, що контактують. Опір
контакту зумовлений двома основними
причинами:
звуження ліній струму в місці контакту;
покриття його поверхні оксидною плівкою (або іншими хімічними сполуками).
Для
контакту є важливим визначення умов
нагрівання місця контакту і поява
електродинамічних зусиль. Контакти
мають певну шороховатість поверхні, що
зв’язане з характером їх обробки, а
місця, в яких контактують поверхні під
дією сили натискання, можуть змінюватись.
Існує ряд залежностей, що виражають
як багатофункціональний параметр, що
залежить від механічних, теплофізичних,
електричних властивостей матеріалу
контактів, температури контактів,
прикладеної сили натискання, кількості
контактуючих площадок. В результаті
можуть виникнути декілька місць контакту,
для яких діаметр:
,
де
– напруження зминання.
= 104 Н/см2÷105 Н/см2.
Для W – вольфраму ~ 2.9·105 Н/см2 є найвищим, для срібла (Ag) – на порядок менший.
У випадку двох одно точкових електродів опір контакту:
(6.2)
де – питомий опір;
– діаметр
контакту;
– радіус контакту.
Підставивши формулу (6.1) в (6.2) можна виразити опір наступним чином:
– для
квадратного контакту. (6.3)
Для круглого контакту:
(6.4)
Якщо подивитись в мікроскоп на профіль двох контактуючих металічних поверхонь, то побачимо картину такого виду (рис.6.6):
Я
к
видно із рисунку, металічний контакт
здійснюється не по всій поверхні, а
тільки в місцях або продавлення плівки
тих чи інших хімічних з’єднань, або, в
іншому випадку, в місцях пробою під дією
різниці потенціалів (перешийок).
В окремих точках шороховатості, де є виступи, вони дотикаються між собою. Збільшення сили контактного нажиму веде до збільшення кількості таких місць. Фактично розміри місць дотикання виступів порядка 2 – 3 мкм. Плівка має товщину ~ 10-8 м, і ~ 105 Ом·см. Вона займає основну площу поверхні контакту.
При замиканні контактів виникає явище, що називається фритинг. Якщо на контактах із ізолюючою плівкою підвищувати напругу, то перехідний опір, що вимірюється МЕГАОМАМИ буде зменшуватись. Вольт-амперна характеристика контакту в цьому стані нагадує характеристику напівпровідникових приладів.
При досягненні напругою деякого значення, що називається напруга фритинга, перехідний опір різко зменшується. Відбувається електричний пробій плівки, що завершується утворенням тонкого металічного провідника в ній. Цей металічний провідник може лишитись і після зняття напруги.
Як уже відмічалось, перехідний опір контактів – це опір, що визначається опором звужених ділянок, по яких проходить струм до площадок стискування, а також опором плівок на поверхні контактів або опором вузьких металічних перешийків, що виникли від фриттинга.
Повний опір областей зтягування ліній струму для двох контактуючих одноточкових електродів, як відмічалось, виражається формулою (6.2).
Для
багатоточкового контакту (
– точок):
(׀׀
включено
опорів). (6.2.а)
Для опору зтягування (а це – опір двох контактуючих електродів)
(6.5)
Формула випливає із залежностей (6.1), (6.2.а),
де – опір контактного матеріалу зім’яттю.
=2 – для лінійного контакту; =3 – для площинного контакту;
– сила
натискання в контактах;
~10÷104 мкОм ( =40Н); 2÷2·102 мкОм ( =240 Н).