
- •Теоретические основы электротехники
- •Часть II.
- •Тема VI
- •Несинусоидальные токи и напряжения
- •В линейных электрических цепях
- •Лекция 16. Представление несинусоидальных токов и напряжений
- •1. Определение периодических несинусоидальных
- •2. Представление периодических несинусоидальных
- •3. Одиночный импульс и интеграл фурье
- •4. Свойства периодических функций,
- •5. Графический (графоаналитический) методы
- •Лекция 17. Анализ линейных электрических цепей при несинусоидальных воздействиях
- •1. Параметры несинусоидальных токов
- •2. Применение принципа наложения к расчету
- •Спектральный метод анализа линейных
- •4. Резонансные явления при несинусоидальных
- •5. Особенности работы трехфазных цепей,
- •Тема VII. Нелинейные электрические цепи
- •Переменного тока
- •Лекция 18. Общие сведения о нэц
- •Переменного тока
- •1. Нелинейные сопротивления в цепях
- •1.1 Общая характеристика нелинейных активных
- •Сопротивлений.
- •1.3. Общая характеристика нелинейных емкостных
- •2. Основные преобразования, осуществляемые
- •3. Числовые параметры нэ в цепях
- •Лекция 19. Методы анализа нэц переменного тока
- •1. Общая характеристика методов анализа
- •2. Графический метод анализа.
- •3. Графоаналитический метод анализа.
- •4. Аналитический метод анализа.
- •5. Работа с отсечкой тока
- •5.1. Аппроксимация вах отрезками прямых.
- •5.2 Анализ цепей в режиме с отсечкой тока.
- •5.3.Понятие «средняя крутизна»
- •Лекция 20. Феррорезонансные цепи
- •1. Феррорезонансная цепь с последовательным
- •1.1. Построение вах последовательной феррорезонансной цепи
- •1.2. Триггерный эффект в последовательной
- •1.3. Феррорезонанс напряжений
- •2. Феррорезонансная цепь с параллельным
- •2.1. Построение вах параллельной феррорезонансной цепи. Феррорезонанс токов.
- •3. Феррорезонансный стабилизатор напряжения
- •Лекция 21. Трансформатор. Основные соотношения.
- •1. Основные параметры трансформатора
- •2. Режимы работы трансформаторов
- •2.1.Опыт холостого хода трансформатора
- •2.2. Опыт короткого замыкания трансформатора
- •3. Внешняя характеристика трансформатора
- •4. Коэффициент полезного действия
- •5. Автотрансформаторы
- •Тема VIII. Переходные процессы в линейных электрических цепях лекция 22. Переходные процессы в неразветвленных электрических цепях
- •1. Основные понятия, определения, законы линейных
- •2. Анализ переходных процессов в неразветвленных
- •2.1. Заряд и разряд ёмкости через резистор
- •2.2. Подключение индуктивности к источнику
- •2.3. Отключение индуктивности от источника
- •2.4. Подключение индуктивности к источнику
- •Лекция 23. Переходные процессы в разветвленных электрических цепях
- •1. Составление уравнений для свободных
- •1.1. Алгебраизация системы уравнений для свободных токов
- •2. Характеристическое уравнение системы
- •2.1. Составление характеристического уравнения по
- •2.2. Составление характеристического уравнения по
- •3. Дополнительные определения в теории
- •4. Зависимость характера свободного процесса от
- •4.1. Характер свободного процесса при одном корне
- •4.2. Характер свободного процесса при двух действительных
- •4.3. Характер свободного процесса при двух равных корнях
- •4.4. Характер свободного процесса при двух комплексно
- •Лекция 24. Классический метод анализа переходных процессов
- •1. Определение постоянных интегрирования
- •2. Анализ линейных электрических цепей
- •2.1. Анализ переходного процесса в цепи с источником
- •2.2. Анализ переходного процесса в цепи с источником
- •Лекция 25. Операторный метод анализа переходных процессов
- •Введение к операторному методу
- •1.1. Изображение постоянной
- •1.2. Изображение показательной функции
- •1.3. Изображение первой производной
- •1.4. Изображение интеграла
- •1.5. Изображение напряжения на активном сопротивлении
- •1.6. Изображение напряжения на индуктивности
- •1.7. Изображение напряжения на конденсаторе
- •1.8. Операторные функции электрических цепей
- •Законы электрических цепей в
- •2.1. Закон Ома
- •2.2. Первый закон Кирхгофа в операторной форме
- •2.3. Второй закон Кирхгофа в операторной форме
- •3. Последовательность расчета
- •3.1. Составление уравнений для изображения искомой
- •3.2. Переход от изображения к функции времени.
- •Лекция 26. Переходные процессы в нэц
- •1. Анализ переходных процессов методом
- •2. Анализ нэц методом кусочно-линейной
- •Лекция 27. Дополнения к переходным процессам
- •1. Переходная проводимость
- •2. Переходная функция по напряжению
- •3. Дифференцирующие цепи
- •4. Интегрирующие цепи
- •5. Переходные процессы при воздействии
- •6. Дельта-функция, единичная функция
- •Тема IX. Длинные линии лекция 28. Линии с распределенными параметрами
- •1. Уравнения длинной линии
- •1.1. Схемы замещения длинных линий
- •1.2. Основные уравнения длинной линии
- •1.3.Характеристики длинной линии
- •2. Установившийся режим в длинной
- •2.1. Уравнения длинной линии без потерь
- •2.2. Режим холостого хода
- •2.3. Режим короткого замыкания
- •2.4. Стоячая волна
- •2.5. Бегущая волна
- •2.6. Волновое сопротивление. Длина волны
- •3. Нагрузочные режимы длинной линии
- •3.1Режим с согласованной нагрузкой
- •Тема X. Электрические фильтры лекция 29. Основы теории пассивных фильтров
- •1. Назначение и классификация фильтров
- •2. Характеристики фильтров нижних частот
- •3. Фильтры верхних частот и их
- •Тема VI. Несинусоидальные токи и
- •Тема VII. Нелинейные электрические цепи
- •Тема VIII. Переходные процессы в линейных
- •Тема IX. Длинные линии 135
- •Тема X. Электрические фильтры 150
3. Нагрузочные режимы длинной линии
БЕЗ ПОТЕРЬ
Кроме крайних режимов холостого хода и короткого замыкания для практики еще более интересными являются нагрузочные режимы, когда в конце линии включается приемник электромагнитной энергии. Из различных нагрузочных режимов рассмотрим режим с согласованной активной нагрузкой.
3.1Режим с согласованной нагрузкой
Режим в линии называется согласованным, если сопротивление нагрузки в конце линии равно ее волновому сопротивлению: Z2 = Zc. В этом случае U2 = I2ZC , а уравнения (28.13) записывают так:
(28.21)
Учитывая, что
уравнения (28.21) можно записать в виде
(28.22)
Предположим,
что синусоидальное напряжение в конце
линии имеет начальную фазу
,
т. е.
.
Если нагрузка линии активная (Zc
= R2
), ток
и напряжение совпадают по фазе. Поэтому
Уравнения напряжения и тока в линии принимают вид:
(28.23)
В этом случае мгновенные значения напряжения и тока в любом пункте линии на расстоянии х от ее концов определяются уравнениями
(28.24)
Это
уравнения бегущих волн напряжения и
тока,
распространяющихся от начала к концу
линии (прямые волны) с фазовой скоростью
.
При согласованной нагрузке отраженных волн в линии нет, следовательно, энергия, которую несет падающая электромагнитная волна, полностью поглощается в нагрузке.
Тема X. Электрические фильтры лекция 29. Основы теории пассивных фильтров
1. Назначение и классификация фильтров
Под электрическими фильтрами понимают ЧТП, включаемые между источником сигналов и приёмником (нагрузкой), назначение которых состоит в том, чтобы без затухания пропускать к приёмнику токи одних частот и задерживать токи других частот. Фильтры применяются в составе усилителей, модуляторов, демодуляторов, генераторов сигналов, вторичных источников питания и т.д.
До 60 годов прошлого столетия фильтры собирались на L, С и R элементах. С разработкой ОУ появилось новое направление проектирования активных фильтров на базе ОУ. В них отсутствуют индуктивности. В настоящее время пассивные фильтры применяются в цепях вторичных источников питания и в составе схем, работающих за пределами частотного диапазона ОУ (более 1МГц).
Альтернативой активных фильтров являются цифровые, но они пока не могут заменить аналоговые фильтры во всех ситуациях, поэтому потребность в пассивных и активных фильтрах остаётся высокой. В рамках этой лекции рассмотрим основы теории пассивных LC-фильтров.
Фильтры классифицируют по частотным свойствам. Фильтры нижних частот (ФНЧ) имеют полосу пропускания от f=0 до f=fв (рис. 29.1, а). Фильтры верхних частот (ФВЧ) имеют полосу пропускания от f=fн до f=∞ (рис. 29.1, б). Полосовой фильтр (ПФ) имеет полосу пропускания от f=fн до f=fв (рис. 29.1, в); полосно-подавляющий (ППФ) или режекторный фильтр имеет полосу подавления сигнала от f=fн до f=fв (рис. 29.1, г).
Кроме деления фильтров по полосе пропускания частот возможно деление:
– по назначению (сглаживающие фильтры источников питания, фильтры помех, фильтры селективных усилителей);
– по типу усилительных элементов (на транзисторах, на ОУ);
– по числу полюсов на частотной характеристике (фильтры первого порядка, второго и более высоких порядков).
Фильтры с идеальными АЧХ физически реализовать невозможно. Поэтому идеальные АЧХ фильтров аппроксимируют такими функциями, которые можно физически реализовать. В зависимости от аппроксимирующей функции различают:
– фильтры с максимально-плоскими АЧХ;
– фильтры с равноволновыми АЧХ;
– фильтры с всплесками затухания.
В зависимости от схемной реализации различают лестничные (рис. 29.2, а) и мостовые фильтры (рис. 29.2, б).
В зависимости от используемой элементной базы применяют:
– LC-фильтры;
– RC-фильтры;
– кварцевые фильтры и т. д.