
- •Теоретические основы электротехники
- •Часть II.
- •Тема VI
- •Несинусоидальные токи и напряжения
- •В линейных электрических цепях
- •Лекция 16. Представление несинусоидальных токов и напряжений
- •1. Определение периодических несинусоидальных
- •2. Представление периодических несинусоидальных
- •3. Одиночный импульс и интеграл фурье
- •4. Свойства периодических функций,
- •5. Графический (графоаналитический) методы
- •Лекция 17. Анализ линейных электрических цепей при несинусоидальных воздействиях
- •1. Параметры несинусоидальных токов
- •2. Применение принципа наложения к расчету
- •Спектральный метод анализа линейных
- •4. Резонансные явления при несинусоидальных
- •5. Особенности работы трехфазных цепей,
- •Тема VII. Нелинейные электрические цепи
- •Переменного тока
- •Лекция 18. Общие сведения о нэц
- •Переменного тока
- •1. Нелинейные сопротивления в цепях
- •1.1 Общая характеристика нелинейных активных
- •Сопротивлений.
- •1.3. Общая характеристика нелинейных емкостных
- •2. Основные преобразования, осуществляемые
- •3. Числовые параметры нэ в цепях
- •Лекция 19. Методы анализа нэц переменного тока
- •1. Общая характеристика методов анализа
- •2. Графический метод анализа.
- •3. Графоаналитический метод анализа.
- •4. Аналитический метод анализа.
- •5. Работа с отсечкой тока
- •5.1. Аппроксимация вах отрезками прямых.
- •5.2 Анализ цепей в режиме с отсечкой тока.
- •5.3.Понятие «средняя крутизна»
- •Лекция 20. Феррорезонансные цепи
- •1. Феррорезонансная цепь с последовательным
- •1.1. Построение вах последовательной феррорезонансной цепи
- •1.2. Триггерный эффект в последовательной
- •1.3. Феррорезонанс напряжений
- •2. Феррорезонансная цепь с параллельным
- •2.1. Построение вах параллельной феррорезонансной цепи. Феррорезонанс токов.
- •3. Феррорезонансный стабилизатор напряжения
- •Лекция 21. Трансформатор. Основные соотношения.
- •1. Основные параметры трансформатора
- •2. Режимы работы трансформаторов
- •2.1.Опыт холостого хода трансформатора
- •2.2. Опыт короткого замыкания трансформатора
- •3. Внешняя характеристика трансформатора
- •4. Коэффициент полезного действия
- •5. Автотрансформаторы
- •Тема VIII. Переходные процессы в линейных электрических цепях лекция 22. Переходные процессы в неразветвленных электрических цепях
- •1. Основные понятия, определения, законы линейных
- •2. Анализ переходных процессов в неразветвленных
- •2.1. Заряд и разряд ёмкости через резистор
- •2.2. Подключение индуктивности к источнику
- •2.3. Отключение индуктивности от источника
- •2.4. Подключение индуктивности к источнику
- •Лекция 23. Переходные процессы в разветвленных электрических цепях
- •1. Составление уравнений для свободных
- •1.1. Алгебраизация системы уравнений для свободных токов
- •2. Характеристическое уравнение системы
- •2.1. Составление характеристического уравнения по
- •2.2. Составление характеристического уравнения по
- •3. Дополнительные определения в теории
- •4. Зависимость характера свободного процесса от
- •4.1. Характер свободного процесса при одном корне
- •4.2. Характер свободного процесса при двух действительных
- •4.3. Характер свободного процесса при двух равных корнях
- •4.4. Характер свободного процесса при двух комплексно
- •Лекция 24. Классический метод анализа переходных процессов
- •1. Определение постоянных интегрирования
- •2. Анализ линейных электрических цепей
- •2.1. Анализ переходного процесса в цепи с источником
- •2.2. Анализ переходного процесса в цепи с источником
- •Лекция 25. Операторный метод анализа переходных процессов
- •Введение к операторному методу
- •1.1. Изображение постоянной
- •1.2. Изображение показательной функции
- •1.3. Изображение первой производной
- •1.4. Изображение интеграла
- •1.5. Изображение напряжения на активном сопротивлении
- •1.6. Изображение напряжения на индуктивности
- •1.7. Изображение напряжения на конденсаторе
- •1.8. Операторные функции электрических цепей
- •Законы электрических цепей в
- •2.1. Закон Ома
- •2.2. Первый закон Кирхгофа в операторной форме
- •2.3. Второй закон Кирхгофа в операторной форме
- •3. Последовательность расчета
- •3.1. Составление уравнений для изображения искомой
- •3.2. Переход от изображения к функции времени.
- •Лекция 26. Переходные процессы в нэц
- •1. Анализ переходных процессов методом
- •2. Анализ нэц методом кусочно-линейной
- •Лекция 27. Дополнения к переходным процессам
- •1. Переходная проводимость
- •2. Переходная функция по напряжению
- •3. Дифференцирующие цепи
- •4. Интегрирующие цепи
- •5. Переходные процессы при воздействии
- •6. Дельта-функция, единичная функция
- •Тема IX. Длинные линии лекция 28. Линии с распределенными параметрами
- •1. Уравнения длинной линии
- •1.1. Схемы замещения длинных линий
- •1.2. Основные уравнения длинной линии
- •1.3.Характеристики длинной линии
- •2. Установившийся режим в длинной
- •2.1. Уравнения длинной линии без потерь
- •2.2. Режим холостого хода
- •2.3. Режим короткого замыкания
- •2.4. Стоячая волна
- •2.5. Бегущая волна
- •2.6. Волновое сопротивление. Длина волны
- •3. Нагрузочные режимы длинной линии
- •3.1Режим с согласованной нагрузкой
- •Тема X. Электрические фильтры лекция 29. Основы теории пассивных фильтров
- •1. Назначение и классификация фильтров
- •2. Характеристики фильтров нижних частот
- •3. Фильтры верхних частот и их
- •Тема VI. Несинусоидальные токи и
- •Тема VII. Нелинейные электрические цепи
- •Тема VIII. Переходные процессы в линейных
- •Тема IX. Длинные линии 135
- •Тема X. Электрические фильтры 150
6. Дельта-функция, единичная функция
Д
ельта-функцией
,
или единичным импульсом
(рис.27.7, а),
называют прямоугольный импульс амплитудой
и длительностью
при стремлении
к нулю. Единичным импульс называют
потому, что его площадь равна единице:
.
Размерность равна с-1.
Единичной функцией
(рис.27.7, б)
называют функцию, равную единице при t
> 0 и равную
нулю при t
< 0. Единичная
функция 1(-t)
(рис. 27.7, в)
равна нулю при t
> 0 и единице
при t
< 0. Функции
и 1(-t)
имеют нулевую размерность.
Свойства :
из определения следует, что
2) производная функции равна , т. е.
3) -функция обладает фильтрующим действием т. е.
4) изображение по Лапласу -функции равно единице, т. е.
.
Единичные функции
и
также обладают фильтрующим свойством.
Умножение произвольной функции f(t)
на
обращает произведение
в нуль при t
< 0. Аналогично,
Импульсное
(игольчатое) напряжение или ток в виде
-функции
записывают в виде
.
Здесь единица имеет размерность В·с
или А·с
соответственно.
Тема IX. Длинные линии лекция 28. Линии с распределенными параметрами
Каждый элемент электрической цепи (резистор, катушка, конденсатор) имеет конечные размеры, и его можно представить как совокупность малых однородных частей, в которых совершаются интересующие нас электромагнитные процессы — преобразование энергии в теплоту, накопление энергии в магнитном и электрических полях. Иначе говоря, все устройства имеют распределенные параметры — сопротивление, индуктивность, емкость.
При изучении электрических цепей до сих пор мы не учитывали размеры устройств, предполагая, что параметры R, L, С сосредоточены, т.е. представляли в расчетной схеме каждый элемент в целом.
Такой подход к анализу электрических цепей принимают тогда, когда рассматривают и изучают внешние связи между элементами. В тех случаях, когда требуется выявить соотношения внутри устройства, соответствующий элемент рассматривается как объект с распределенными параметрами. Таким объектом может быть обмотка электрической машины, трансформатора, антенна радиотехнического устройства и др.
Электрическая цепь с распределенными параметрами — это цепь, в которой сопротивления, проводимости, индуктивности и емкости распределены вдоль цепи. Наглядным примером цепи с распределенными параметрами является электрическая длинная линия.
1. Уравнения длинной линии
Длинные линии строят для передачи электрической энергии, для электросвязи (передачи информации). Их рассматривают как объекты с распределенными параметрами при низких частотах и длине в десятки и сотни километров.
В радиотехнике при высоких частотах распределение параметров по длине учитывают в более коротких участках проводов (единицы и доли метра), например в антеннах.
1.1. Схемы замещения длинных линий
Н
а
рис. 28.1 изображена схема электрической
цепи, состоящей из источника и приемника
электрической энергии, связанных
двухпроводной линией. Эту цепь можно
рассматривать неразветвленной, с
одинаковым током во всех ее элементах,
если не учитывать двух обстоятельств:
скорость распространения электромагнитных
возмущений конечна; имеются токи,
обусловленные емкостью между проводами
(емкостный ток) и проводимостью изоляции
(ток утечки через изоляцию).
В ряде случаев первое обстоятельство можно не учитывать, так как скорость распространения электромагнитных возмущений действительно велика (в вакууме равна скорости света).
Относительно второго обстоятельства следует учитывать, что емкостные токи и токи утечки пропорциональны напряжению между проводами; кроме того, емкостный ток увеличивается с ростом частоты, так как уменьшается емкостное сопротивление. Поэтому при высоком напряжении или большой частоте, а также при большой длине линии емкостные токи и токи утечки становятся значительными по величине и их нельзя исключить из расчета.
Токи между проводами существуют на сколь угодно малом отрезке линии, поэтому ток в проводах уменьшается по мере удаления от начала линии.
Напряжение между проводами вдоль линии тоже неодинаково. Оно уменьшается в направлении от начала к концу линии, так как растет падение напряжения, обусловленное активным и индуктивным сопротивлениями проводов.
Схема замещения линии, учитывающая приведенные обстоятельства, приведена на рис. 28.2. На схеме замещения бесконечно малый участок двухпроводной линии длиной dx представлен ячейкой с активным сопротивление прямого и обратного проводов R0dx, индуктивностью L0dx, проводимостью G0dx и емкостью между проводами C0dx. Вся линия изображается электрической схемой последовательно соединенных ячеек. Активное сопротивление, индуктивность, проводимость и емкость считают равномерно распределенными вдоль линий, a R0, L0, G0, C0 — значения этих параметров на единицу длины.
Линия с равномерным распределением параметров называется однородной. Реальные линии можно считать однородными лишь приближенно, так как их параметры распределены неравномерно. Например, проводимость воздушной линии сосредоточена в основном на опорах, а благодаря провесу проводов емкость по отношению к земле вдоль пролета неодинакова.
В зависимости от целей и требуемой точности расчета можно учитывать все четыре параметра или некоторые из них. Так, при рассмотрении линии электропередачи напряжением до 35 кВ и при частоте 50 Гц часто не учитывают емкостные токи и токи утечки, т. е. считают равными нулю параметры С0 и G0.
При высокой частоте (например, в радиотехнических устройствах) или при коротких импульсах напряжения в линиях, возникающих от грозовых разрядов, емкостные токи между проводами могут быть сравнительно большими и ими пренебрегать нельзя.
Вместе с тем при высокой частоте и малой длине линии в отдельных случаях можно пренебречь активным сопротивлением R0 и проводимостью С0.
При таком упрощении получается линия без потерь, схема замещения которой показана на рис. 28.3.