
- •Теоретические основы электротехники
- •Часть II.
- •Тема VI
- •Несинусоидальные токи и напряжения
- •В линейных электрических цепях
- •Лекция 16. Представление несинусоидальных токов и напряжений
- •1. Определение периодических несинусоидальных
- •2. Представление периодических несинусоидальных
- •3. Одиночный импульс и интеграл фурье
- •4. Свойства периодических функций,
- •5. Графический (графоаналитический) методы
- •Лекция 17. Анализ линейных электрических цепей при несинусоидальных воздействиях
- •1. Параметры несинусоидальных токов
- •2. Применение принципа наложения к расчету
- •Спектральный метод анализа линейных
- •4. Резонансные явления при несинусоидальных
- •5. Особенности работы трехфазных цепей,
- •Тема VII. Нелинейные электрические цепи
- •Переменного тока
- •Лекция 18. Общие сведения о нэц
- •Переменного тока
- •1. Нелинейные сопротивления в цепях
- •1.1 Общая характеристика нелинейных активных
- •Сопротивлений.
- •1.3. Общая характеристика нелинейных емкостных
- •2. Основные преобразования, осуществляемые
- •3. Числовые параметры нэ в цепях
- •Лекция 19. Методы анализа нэц переменного тока
- •1. Общая характеристика методов анализа
- •2. Графический метод анализа.
- •3. Графоаналитический метод анализа.
- •4. Аналитический метод анализа.
- •5. Работа с отсечкой тока
- •5.1. Аппроксимация вах отрезками прямых.
- •5.2 Анализ цепей в режиме с отсечкой тока.
- •5.3.Понятие «средняя крутизна»
- •Лекция 20. Феррорезонансные цепи
- •1. Феррорезонансная цепь с последовательным
- •1.1. Построение вах последовательной феррорезонансной цепи
- •1.2. Триггерный эффект в последовательной
- •1.3. Феррорезонанс напряжений
- •2. Феррорезонансная цепь с параллельным
- •2.1. Построение вах параллельной феррорезонансной цепи. Феррорезонанс токов.
- •3. Феррорезонансный стабилизатор напряжения
- •Лекция 21. Трансформатор. Основные соотношения.
- •1. Основные параметры трансформатора
- •2. Режимы работы трансформаторов
- •2.1.Опыт холостого хода трансформатора
- •2.2. Опыт короткого замыкания трансформатора
- •3. Внешняя характеристика трансформатора
- •4. Коэффициент полезного действия
- •5. Автотрансформаторы
- •Тема VIII. Переходные процессы в линейных электрических цепях лекция 22. Переходные процессы в неразветвленных электрических цепях
- •1. Основные понятия, определения, законы линейных
- •2. Анализ переходных процессов в неразветвленных
- •2.1. Заряд и разряд ёмкости через резистор
- •2.2. Подключение индуктивности к источнику
- •2.3. Отключение индуктивности от источника
- •2.4. Подключение индуктивности к источнику
- •Лекция 23. Переходные процессы в разветвленных электрических цепях
- •1. Составление уравнений для свободных
- •1.1. Алгебраизация системы уравнений для свободных токов
- •2. Характеристическое уравнение системы
- •2.1. Составление характеристического уравнения по
- •2.2. Составление характеристического уравнения по
- •3. Дополнительные определения в теории
- •4. Зависимость характера свободного процесса от
- •4.1. Характер свободного процесса при одном корне
- •4.2. Характер свободного процесса при двух действительных
- •4.3. Характер свободного процесса при двух равных корнях
- •4.4. Характер свободного процесса при двух комплексно
- •Лекция 24. Классический метод анализа переходных процессов
- •1. Определение постоянных интегрирования
- •2. Анализ линейных электрических цепей
- •2.1. Анализ переходного процесса в цепи с источником
- •2.2. Анализ переходного процесса в цепи с источником
- •Лекция 25. Операторный метод анализа переходных процессов
- •Введение к операторному методу
- •1.1. Изображение постоянной
- •1.2. Изображение показательной функции
- •1.3. Изображение первой производной
- •1.4. Изображение интеграла
- •1.5. Изображение напряжения на активном сопротивлении
- •1.6. Изображение напряжения на индуктивности
- •1.7. Изображение напряжения на конденсаторе
- •1.8. Операторные функции электрических цепей
- •Законы электрических цепей в
- •2.1. Закон Ома
- •2.2. Первый закон Кирхгофа в операторной форме
- •2.3. Второй закон Кирхгофа в операторной форме
- •3. Последовательность расчета
- •3.1. Составление уравнений для изображения искомой
- •3.2. Переход от изображения к функции времени.
- •Лекция 26. Переходные процессы в нэц
- •1. Анализ переходных процессов методом
- •2. Анализ нэц методом кусочно-линейной
- •Лекция 27. Дополнения к переходным процессам
- •1. Переходная проводимость
- •2. Переходная функция по напряжению
- •3. Дифференцирующие цепи
- •4. Интегрирующие цепи
- •5. Переходные процессы при воздействии
- •6. Дельта-функция, единичная функция
- •Тема IX. Длинные линии лекция 28. Линии с распределенными параметрами
- •1. Уравнения длинной линии
- •1.1. Схемы замещения длинных линий
- •1.2. Основные уравнения длинной линии
- •1.3.Характеристики длинной линии
- •2. Установившийся режим в длинной
- •2.1. Уравнения длинной линии без потерь
- •2.2. Режим холостого хода
- •2.3. Режим короткого замыкания
- •2.4. Стоячая волна
- •2.5. Бегущая волна
- •2.6. Волновое сопротивление. Длина волны
- •3. Нагрузочные режимы длинной линии
- •3.1Режим с согласованной нагрузкой
- •Тема X. Электрические фильтры лекция 29. Основы теории пассивных фильтров
- •1. Назначение и классификация фильтров
- •2. Характеристики фильтров нижних частот
- •3. Фильтры верхних частот и их
- •Тема VI. Несинусоидальные токи и
- •Тема VII. Нелинейные электрические цепи
- •Тема VIII. Переходные процессы в линейных
- •Тема IX. Длинные линии 135
- •Тема X. Электрические фильтры 150
2. Режимы работы трансформаторов
Различают несколько режимов работы трансформаторов:
Номинальный режим, т.е. режим при номинальных значениях напряжения и тока первичной обработки трансформатора:
.
Рабочий режим, при котором напряжение первичной обмотки близко к номинальному или равно ему, а ток
определяется нагрузкой трансформатора.
Режим холостого хода, т.е. режим ненагруженного трансформатора, при котором цепь вторичной обмотки разомкнута (
или подключена к нагрузке с очень большим сопротивлением (например, в цепь включен вольтметр).
Режим короткого замыкания трансформатора, при котором его вторичная обмотка замкнута накоротко (
или подключена к нагрузке с очень малым сопротивлением (например, в цепь включен амперметр).
Обычно трансформаторы эксплуатируются в рабочем режиме. Номинальный режим работы возникает, когда нагрузка соответствует номинальной. Режимы холостого хода и короткого замыкания в обычных условиях не допускаются. Они возникают при авариях. Но режимы холостого хода и короткого замыкания могут создаваться специально, для испытания трансформаторов на заводах изготовителях или в специальных лабораториях. Такие испытания проводят для экспериментального определения параметров вновь созданных трансформаторов и называются опытами холостого хода и короткого замыкания. Рассмотрим их более внимательно.
2.1.Опыт холостого хода трансформатора
Опытом холостого хода называют испытание трансформатора при
разомкнутой цепи вторичной обмотки и номинальном напряжении на первичной обмотке. Схема для проведения опыта холостого хода приведена на рис. 21.5. Полагая, что измерительные приборы не вносят в режим работы трансформатора сколько-нибудь ощутимых изменений, можем измерить ряд его параметров(U1Н, I1Х, U2Н, РС), а затем дополнить это ряд расчетами(I1Н, n21).
Опыт холостого
хода начинают проводить с установки
номинального напряжения на первичной
обмотке трансформатора. Величину
напряжения контролируют по показаниям
вольтметра V1.
Показания амперметра, при
,
определяют номинальное значение тока
холостого хода -
.
Учитывая, что этот ток составляет 3
10% от
номинального тока первичной обмотки
для мощных трансформаторов и до 40%
для маломощных, можем рассчитать значение
номинального тока первичной обмотки
.
(21.21)
Кроме этого, при
разомкнутой цепи вторичной обмотки
всегда
.
Это значит, что
.
Измерив вольтметрами
и
,
легко определить коэффициент трансформации
.
(21.22)
Мощность
потерь в трансформаторе при холостом
ходе складывается из мощности потерь
в магнитопроводе – Рс
и в проводах – Рпр.
Мощность потерь в магнитопроводе
пропорциональна квадрату магнитной
индукции - В2,
а, значит, и квадрату напряжения первичной
обмотки –
.
Так как
,
то и потери в магнитопроводе соответствуют
номинальному значению.
Потери в проводах
вторичной обмотки отсутствуют, так как
.
Потери в проводах первичной обмотки
пропорциональны квадрату тока холостого
хода (
).
Но ток холостого хода пренебрежимо мал
в сравнении с номинальным током. Поэтому
и мощность потерь в проводах ничтожна
по сравнению с мощностью потерь в
магнитопроводе. Отсюда следует, что
показания ваттметра в опыте холостого
хода определяют только потери в
магнитопроводе – Рс.
Следует учитывать, что потери Рс складываются из потерь на гистерезис и дополнительных потерь на вихревые токи, потерь в деталях конструкции и потерь из-за вибрации листов стали магнитопровода. Однако эти дополнительные потери не превышают 20% от общих потерь.
В ряде случаев
важно знать, как изменится ток холостого
хода трансформатора при изменении
напряжения на первичной обмотке.
Зависимость
приведена на рис. 21.6. Она называется
характеристикой холостого хода
трансформатора.
При малых значениях
значение магнитной индукции
мало. Магнитопровод не насыщен, поэтому
увеличивается пропорционально напряжению.
При увеличении
начинает сказываться насыщение
магнитопровода и приращение тока
холостого хода увеличивается.
Магнитопровод
трансформатора проектируют так, чтобы
значение магнитной индукции не превышало
величины 1,6
1,7 Тл.
При таком значении магнитной индукции
увеличение
до 1,2
не приводит к критическому увеличению
тока холостого хода и допустимо в течение
длительного времени.