
- •Статистика
- •Статистика
- •Содержание
- •Введение
- •Тема 1. Предмет, метод, задачи и организация статистики
- •Контрольные вопросы
- •Тема 2. Статистическое измерение и наблюдение социально-экономических явлений
- •Контрольные вопросы
- •Тема 3. Сводка и группировка статистических данных
- •Средняя месячная заработная плата работников организации
- •Группы работников по размеру заработной платы
- •Распределение работников по размеру среднемесячной заработной платы
- •Группировка райпо по среднегодовой стоимости основных фондов
- •Группировка райпо по среднегодовой стоимости основных фондов
- •Распределение фермерских хозяйств по числу дворов
- •Распределение фермерских хозяйств по числу дворов в районах области
- •Вариационный ряд распределения семей по числу членов
- •Контрольные вопросы
- •Тема 4. Статистические таблицы
- •Контрольные вопросы
- •Тема 5. Графическое изображение статистических данных
- •Контрольные вопросы
- •Тема 6. Абсолютные и относительные показатели
- •Объем производства мыла и моющих средств в условном исчислении
- •Динамика оборота розничной торговли района за январь-май (включая общественное питание)
- •Контрольные вопросы
- •Тема 7. Средние величины в статистике
- •Контрольные вопросы
- •Тема 8. Изучение вариации
- •Расчетная таблица
- •Продукция, представленная на контроль качества
- •Контрольные вопросы
- •Тема 9. Выборочное наблюдение
- •Символы основных характеристик параметров генеральной и выборочной совокупности
- •Определение предельной ошибки выборки для различных способов формирования выборочной совокупности
- •Необходимый объем выборки для некоторых способов формирования выборочной совокупности
- •Распределение вероятности в малых выборках в зависимости от коэффициента доверия t и объема выборки n*
- •Некоторые значения t-распределения Стьюдента
- •Контрольные вопросы
- •Тема 10. Ряды динамики и их применение в анализе социально-экономических явлений
- •Динамика производства продукции промышленного предприятия за 2005-2010 гг.
- •Продажа продовольственных товаров на душу населения области
- •Динамика продажи продовольственных товаров
- •Расчет параметров и
- •Расчет параметров и с помощью определителей
- •Годовые уровни реализации товара
- •Контрольные вопросы
- •Тема 11. Индексный метод анализа
- •Контрольные вопросы
- •Тема 12. Корреляционно-регрессионный
- •Стоимость основных фондов и выпуск продукции
- •Расчет коэффициента корреляции
- •Тема 13. Статистика населения
- •Контрольные вопросы
- •Тема 14. Статистика трудовых ресурсов
- •Решение:
- •Тема 15. Статистика национального богатства
- •Контрольные вопросы
- •Тема 16. Макроэкономические показатели в системе национальных счетов, экономические балансы
- •Общая схема межотраслевого баланса
- •Контрольные вопросы
- •Тема 17. Статистика эффективности функционирования предприятий различных форм собственности
- •Контрольные вопросы
- •Тема 18. Статистический анализ качества технологий, продуктов и услуг
- •Расчет показателей брака, д.Е.
- •Решение
- •Контрольные вопросы
- •Тема 19. Статистические методы оценки финансовых, страховых и бизнес-рисков предприятий
- •Степени и последствия риска
- •Расчет рыночной стоимости облигации
- •Контрольные вопросы
- •Тема 20. Статистика денежного обращения
- •Тема 21. Статистика цен и инфляции
- •Контрольные вопросы
- •Тема 22. Статистика банковской деятельности
- •Контрольные вопросы
- •Тема 23. Статистика финансовых
- •Контрольные вопросы
- •Тема 24. Статистика налогов и налогообложения
- •Контрольные вопросы
- •Словарь основных экономических терминов
- •Список рекомендуемой литературы Основная
- •Дополнительная
- •Статистика
- •308023, Г. Белгород, ул. Садовая, 116а
Стоимость основных фондов и выпуск продукции
Номер цеха |
Стоимость основных фондов, млн. руб. x |
Выпуск продукции, млн. руб.y |
|
|
|
1 |
6 |
2,4 |
14,4 |
36 |
2,692 |
2 |
8 |
4,0 |
32,0 |
64 |
3,537 |
3 |
9 |
3,6 |
32,4 |
81 |
3,958 |
4 |
10 |
4,0 |
40,0 |
100 |
4,380 |
5 |
10 |
4,5 |
45,0 |
100 |
4,380 |
6 |
11 |
4,6 |
50,6 |
121 |
4,802 |
7 |
12 |
5,6 |
67,2 |
144 |
5,224 |
8 |
13 |
6,5 |
84,5 |
169 |
5,646 |
9 |
14 |
7,0 |
98,0 |
196 |
6,068 |
10 |
15 |
5,0 |
75,0 |
225 |
6,490 |
Итого |
108 |
42,7 |
539,1 |
1236 |
|
Анализ данных табл. 12.1 показывает, что с увеличением стоимости основных фондов растет, как правило, и выпуск продукции.
Для
определения формы связи построим
эмпирическую линию связи. По ее виду
можно предположить наличие линейной
корреляционной связи между признаками,
которая выражается уравнением прямой
.
Для определения параметров
и
используем метод наименьших квадратов,
который дает следующую систему нормальных
уравнений:
n+
Σx=Σy
Σx+
Σx²=Σyx,
где n – численность совокупности (в нашем примере n=10).
На основе расчетов, приведенных в табл. 1, запишем систему нормальных уравнений:
1
0
+108
=47,2
108 +1236 =539,1
Решение этой системы нормальных уравнений:
.
.
Параметр уравнения показывает, что с увеличением стоимости фондов на 1 млн. руб. выпуск продукции увеличивается в среднем на 0,422 млн. руб. Линейное уравнение корреляционной связи будет иметь следующий вид:
.
Значения для каждого значения x приведены в табл. 2.12.
Чтобы измерить тесноту прямолинейной связи, рассчитывают коэффициент корреляции по одной из приведенных ниже формул:
(12.1)
.
(12.2)
Для расчета коэффициента корреляции проведем дополнительные вычисления.
Таблица 12.2
Расчет коэффициента корреляции
Номер цеха |
x |
y |
|
|
|
1 |
6 |
2,4 |
23,04 |
5,38 |
14,4 |
2 |
8 |
4,0 |
7,84 |
0,52 |
32,0 |
3 |
9 |
3,6 |
3,24 |
1,25 |
32,4 |
4 |
10 |
4,0 |
0,64 |
0,52 |
40,0 |
5 |
10 |
4,5 |
0,64 |
0,05 |
45,0 |
6 |
11 |
4,6 |
0,04 |
0,01 |
50,6 |
7 |
12 |
5,6 |
1,44 |
0,77 |
67,2 |
8 |
13 |
6,5 |
4,84 |
3,17 |
84,5 |
9 |
14 |
7,0 |
10,24 |
5,20 |
98,0 |
10 |
15 |
5,0 |
17,64 |
0,08 |
75,0 |
|
108 |
47,2 |
69,60 |
16,96 |
539,1 |
;
;
;
;
.
Подставим необходимые данные в формулу:
.
Таким образом, связь между стоимостью основных фондов и выпуском продукции прямая и высокая.
В случае нелинейной зависимости между признаками для измерения тесноты связи применяют корреляционное отношение, которое исчисляется по формуле:
,
(12.3)
где y – фактические значения;
– среднее
значение;
– теоретические
(выравненные) значения переменной
величины.
При ориентировочной оценке тесноты связи пользуются приближенными показателями, не требующими сложных, трудоемких расчетов. К ним относятся: коэффициент корреляции знаков Фехнера, коэффициент корреляции рангов Спирмена, коэффициент ассоциации и коэффициент контингенции.
Коэффициент корреляции знаков Фехнера основан на сопоставлении знаков отклонений от средней и подсчете числа случаев совпадения знаков:
,
(12.4)
где
u
– число пар
с одинаковыми знаками отклонений x
и y
от
и
;
v – число пар с разными знаками отклонений x и y от и .
Коэффициент корреляции рангов Спирмена исчисляется по рангам (порядковым номерам), которые присваиваются всем значениям изучаемых признаков, расположенным в порядке их возрастания. Если значения признака совпадают, то определяется средний ранг путем деления суммы рангов на число значений.
Коэффициент корреляции рангов определяется по формуле:
,
(12.5)
где
– квадрат разности рангов для каждой
единицы;
n – число наблюдений (число пар рангов).
Контрольные вопросы
1. Дайте определение факторных и результативных признаков.
2. Виды связей между явлениями по степени тесноты связей, по направлению и аналитическому выражению.
3. Функциональные, корреляционные и статистические зависимости. Общие различия между ними.
4. Корреляционно-регрессионный метод анализа связей между явлениями.