
- •6.1. Общая постановка задачи 318
- •0. Введение
- •0.1. Приближенные вычисления
- •0.2. Численные методы и программирование
- •0.3. Особенности машинных вычислений
- •0.4. Структура учебного пособия
- •1. Специальные классы математических объектов и операции над ними
- •1.1. Комплексные числа
- •1.1.1. Основные понятия
- •1.2. Векторы
- •1.2.1. Основные понятия
- •1.2.2. Определение программного класса многомерных векторов
- •1.3. Полиномы
- •1.3.1. Общие сведения
- •1.3.2. Операции над полиномами
- •1.3.3. Вычисление значений полиномов
- •1.3.4. Вычисление корней полиномов
- •1.3.5. Определение программного класса полиномов
- •2. Матрицы и задачи линейной алгебры
- •2.1. Общие сведения о матрицах и матричных операциях
- •2.2. Методы решения основных задач линейной алгебры
- •2.2.1. Методы решения систем линейных алгебраических уравнений (слау)
- •2.2.1.1. Метод Гаусса для решения слау, вычисления определителей и обращения матриц
- •2.2.1.2. Предварительная факторизация матриц (разложение в произведение двух матриц) в задачах решения слау
- •2.2.1.2.1. Факторизация матриц по методу Холецкого
- •2.2.1.3. Метод ортогонализации для решения слау
- •2.2.1.4. Итерационные методы решения слау
- •2.2.1.4.1. Проблема сходимости итерационных методов
- •2.2.2. Методы вычисления собственных значений матриц
- •2.2.2.1. Метод неопределенных коэффициентов
- •2.2.2.2. Метод Данилевского
- •2.2.2.4. Метод Леверрье-Фаддеева
- •2.2.2.5. Итерационный степенной метод
- •2.2.2.6. Метод Крылова
- •2.2.3. Метод наименьших квадратов (мнк)
- •2.3. Программная реализация матричного класса
- •2.3.1. Общее описание структуры матричного класса
- •2.3.2. Интерфейсный файл реализации матричного класса matrix.H
- •2.4. Программная реализация методов вычисления собственных значений и собственных векторов матриц
- •2.4.1. Метод неопределенных коэффициентов
- •2.4.2. Программная реализация метода Крылова вычисления собственных значений
- •2.4.3. Метод Леверрье-Фаддеева вычисления коэффициентов характеристического полинома
- •2.5. Элементы линейного программирования
- •2.5.1. Общая постановка задачи
- •2.5.2. Примеры задач линейного программирования
- •2.5.2.1. Задача о пищевом рационе
- •2.5.2.2. Задача о распределении ресурсов
- •2.5.2.3. Задача планирования перевозок (транспортная задача)
- •2.5.3. Симплекс-метод решения задачи линейного программирования
- •2.5.3.1. Приведение системы к стандартной, удобной для преобразований форме
- •2.5.3.2. Алгоритм замены базисных переменных
- •2.5.3.3. Алгоритм поиска опорного решения озлп
- •2.5.3.3.1. Алгоритм выбора разрешающего элемента для приближения к опорному решению
- •2.5.3.4. Алгоритм поиска оптимального решения
- •2.5.4. Транспортная задача линейного программирования
- •2.5.4.1. Общие сведения
- •2.5.4.2. Формирование опорного плана
- •2.5.4.3. Циклические переносы перевозок для улучшения плана
- •2.5.4.4. Метод потенциалов
- •2.5.5. Транспортная задача при небалансе запасов и заявок
- •2.5.6. Транспортная задача с временным критерием
- •2.6. Программная реализация задач линейного программирования
- •2.6.1. Симплекс-метод решения озлп
- •2.6.2. Программная реализация метода решения транспортной задачи
- •3. Аналитическое приближение функций, заданных таблично
- •3.1. Общая постановка задачи
- •3.2. Общая методика решения задач аппроксимации
- •3.2.1. Алгебраическая интерполяция
- •3.2.1.1. Классический интерполяционный полином
- •3.2.1.2. Метод интерполяции Лагранжа
- •3.2.1.3. Интерполяционный полином Ньютона
- •3.2.1.4. Интерполяция сплайнами
- •3.2.1.5. Аппроксимация функций по методу наименьших квадратов
- •3.2.2. Программная реализация класса аппроксимирующих функций
- •4.1.2. Программная реализация методов численного интегрирования
- •4.2.Численное дифференцирование
- •5. Введение в численные методы решения дифференциальных уравнений
- •5.1. Обыкновенные дифференциальные уравнения (общие сведения)
- •5.2. Процессы как объект исследования и управления
- •5.3. Операционное исчисление и его применение к исследованию динамики линейных систем
- •5.3.1. Общие сведения
- •5.3.1.1. Правила операционного исчисления
- •5.3.2. Решение линейных уравнений с постоянными коэффициентами
- •5.3.2.1. Передаточные функции линейных динамических систем
- •5.3.2.2. Частотные характеристики динамических систем
- •5.3.2.3. Фазовые портреты динамических систем
- •5.3.2.4. Ограничения области применения символического метода
- •5.3.3. Программная реализация класса символического метода
- •5.4. Конечно-разностные методы решения задачи Коши для линейных и нелинейных оду
- •5.4.1. Одношаговые методы
- •5.4.1.1. Метод Эйлера
- •5.4.1.2. Методы Рунге-Кутта 2-го порядка
- •5.4.1.3. Метод Рунге-Кутта 4-го порядка
- •5.4.2. Многошаговые методы (методы Адамса)
- •5.4.3. Проблема устойчивости
- •5.4.4. Программная реализация численных методов решения задачи Коши
- •5.5. Двухточечные краевые задачи
- •5.5.1. Метод конечных разностей для линейных краевых (граничных) задач
- •5.5.2. Метод стрельбы для граничных задач
- •5.5.3. Программная реализация класса граничных задач
- •6. Численные методы решения систем нелинейных уравнений (сну) и поиска экстремумов функций
- •6.1. Общая постановка задачи
- •6.2. Решение нелинейных уравнений
- •6.2.1. Функция одной переменной при отсутствии помех
- •6.2.1.1. Методы последовательного сокращения интервала неопределенности
- •6.2.1.2. Рекуррентные методы уточнения текущей оценки значения корня
- •6.2.2. Уточнение корня функции одной переменной в условиях помех
- •6.2.2.1. Методы стохастической аппроксимации
- •6.3. Методы поиска экстремума функций
- •6.3.1. Унимодальные функции одного аргумента при отсутствии помех
- •6.3.1.1. Метод дихотомии
- •6.3.1.2. Метод Фибоначчи
- •6.3.1.3. Метод золотого сечения
- •6.3.2. Многомерный поиск экстремума
- •6.3.2.1. Метод координатного спуска
- •6.3.2.2. Метод градиента (наискорейшего спуска или крутого восхождения или метод Бокса-Уилсона)
- •6.3.2.3. Последовательный симплексный поиск (псм) субоптимальной области в многомерном пространстве
- •6.3.2.3.1. Вводные замечания
- •6.3.2.3.2. Алгоритм последовательного симплексного метода
- •6.3.2.3.3. Подготовительные операции
- •6.3.2.3.4. Алгоритм поиска
- •6.3.2.3.5. Преимущества метода
- •6.3.2.3.6. Недостатки метода
- •6.4. Программная реализация класса подпрограмм для поиска экстремума унимодальных в заданном интервале функций одной переменной
- •6.5. Программная реализация класса подпрограмм для многомерного поиска экстремума унимодальных функций
- •Приложение. Как переносить данные в Ехсеl и отображать графики зависимостей
- •Литература
- •324050, Кривой Рог-50, пр. Металлургов, 28.
3.2. Общая методика решения задач аппроксимации
Обычно в качестве аппроксимирующей функции выбирают линейную комбинацию функций, выбранных из рассмотренных классов, вида:
t(x)=
с действительными коэффициентами ci. Если такой обобщенный многочлен сформирован и выбран критерий оптимальности приближения, то можно составить и решить систему алгебраических уравнений, линейных относительно коэффициентов сi:
=f(xk),
где k=0, 1, 2, … – порядковый номер узла, f(xk) – заданное табличное значение функции в k-м узле.
Очевидно, что количество таких уравнений должно быть не меньше n+1, а способ ее решения зависит от критерия приближения.
Если
требуется точное проведение аппроксимирующей
функции через узловые точки, то есть
решается задача интерполяции в постановке
Лагранжа, то k=n+1,
а к системе
функций
предъявляются следующее требование:
Чтобы для заданной функции f(x), определенной на отрезке [a, b], и набора n+1 узлов x0, x1, …, xn (x[a, b]) существовал и был единственным обобщенный интерполяционный многочлен t(x)= , необходимо и достаточно, чтобы любой обобщенный многочлен (с хотя бы одним ненулевым коэффициентом) по выбранной системе функций имел на отрезке [a, b] не более n корней.
В настоящем пособии рассмотрены только основные методы алгебраической аппроксимации в разрезе задач интерполяции функций и сглаживания по методу наименьших квадратов. Специфичные вопросы прогнозирования и фильтрации требуют рассмотрения стохастических подходов и не укладываются в короткий вводный курс.
3.2.1. Алгебраическая интерполяция
3.2.1.1. Классический интерполяционный полином
Использование
в качестве
последовательности степенных функций
приводит к аппроксимирующей функции в
виде классического полинома
и к системе n+1
линейных уравнений вида:
относительно ci.
Определитель
этой системы есть определитель
Вандермонда, который не равен нулю, если
мы не используем повторяющихся узлов.
Решение СЛАУ любым из известных методов
относительно ci
полностью определяет интерполяционный
полином и оценка значения f(x)
в любой неузловой точке может быть
получена вычислением значения полинома
в этой точке. Этот полином можно также
использовать в дальнейших аналитических
процедурах дифференцирования,
интегрирования и пр.
В следующих разделах мы рассмотрим другие формы записи интерполяционных полиномов, но необходимо понимать, что независимо от формы записи два интерполяционных полинома степени n, проведенных через одни и те же n+1 узловые точки, тождественно равны, так как их разность есть полином степени не выше n и его значение обращается в нуль в этих узловых точках, т.е. тождественно равна нулю.
3.2.1.2. Метод интерполяции Лагранжа
При использовании классического полинома мы сначала получали полином (его коэффициенты), а затем использовали его для интерполяции. Метод Лагранжа предполагает строить интерполяционный полином для каждого вычисляемого значения, объединяя его построение с вычислением. Основная идея этого метода состоит в том, что сначала ищется многочлен, значение которого равно 1 в одной узловой точке и 0 – в остальных. Функция
Lj(x)=
при ij есть многочлен степени n, значение которого 1 при x=xj и 0 если x=xi, ij.
Тогда
многочлен f(xi)Lj(x)
будет принимать значение f(xi)
в i-й
узловой точке и 0 в остальных узлах.
Тогда многочлен f(x)=
степени n
проходит через n+1
точку (xi,
yi).
Эта
запись неудобна для вычислений и ее
приводят к так называемой барицентрической
форме. Пусть все f(xi)=1,
тогда
.
Положим
и разделим числитель и знаменатель на
.
Получим расчетную формулу:
f(x)=
.
Так как метод Лагранжа требует вычисления интерполяционного полинома при каждом определении значения в межузловых промежутках, используют его только при интерполяции на небольшом количестве точек.