
- •Департамент образования, науки и кадров
- •Предисловие
- •Предмет и метод статистики
- •Предмет статистики.
- •Статистическая совокупность и статистическая единица. Статистические признаки и показатели.
- •1.3. Метод статистики. Стадии (этапы) статистического исследования.
- •Современная систематизация статистики в Республике Беларусь. Задачи государственной статистики.
- •Контрольные вопросы к теме 1
- •2. Метод статистического наблюдения
- •2.1. Сущность статистического наблюдения.
- •2.2. Организационно – методический план проведения статистического наблюдения.
- •2.3. Программа статистического наблюдения.
- •2.4. Формы статистического наблюдения.
- •2.5. Статистические формуляры.
- •Виды статистического наблюдения.
- •Способы проведения статистических наблюдений.
- •2.8. Место, сроки и период проведения статистических наблюдений.
- •Ошибки статистического наблюдения и меры борьбы с ними.
- •2.10. Первичная статистическая сводка.
- •Контрольные вопросы к теме 2
- •Метод обсалютных и относительных статистических показателей
- •3.1. Содержание, виды и значения абсолютных статистических показателей.
- •3.2. Сущность и значение относительных статистических показателей.
- •3.3. Виды относительных показателей. Относительные показатели динамики
- •3.4. Относительные показатели структуры.
- •Относительные показатели координации.
- •Относительные показатели интенсивности.
- •Относительные показатели сравнения.
- •Относительные показатели выполнения заказа.
- •Относительные показатели уровня экономического развития.
- •Контрольные вопросы к теме № 3
- •Графический метод
- •4.1. Сущность и значение графического метода.
- •Классификация графических изображений.
- •4.3. Основные требования, предъявляемые к построению координатных диаграмм.
- •4.4. Способы графического изображения показателей динамики и структуры.
- •Способы графического изображения показателей сравнения.
- •Сущность и значение картограмм и картодиаграммы.
- •Контрольная вопросы к теме 4
- •Метод вариационных рядов
- •Сущность вариации. Виды вариационных признаков.
- •5.2. Понятие о вариационных рядах. Ранжированный ряд.
- •По числу работников животноводства
- •5.3. Дискретный ряд распределения.
- •Работников животноводства
- •5.4. Интервальный ряд распределения.
- •Контрольные вопросы к теме 5
- •6. Метод средних величин и показателей вариации
- •6.1. Сущность средних величин.
- •6.2. Средняя арифметическая величина.
- •В ранжированном ряду распределения
- •Ряду распределения
- •6.3. Основные свойства средней арифметической величины.
- •6.4. Средняя хронологическая величина.
- •6.5. Средняя квадратическая величина.
- •Средняя геометрическая величина.
- •6.7 Средняя гармоническая величина.
- •6.8. Структурные среднее. Сущность и значение моды
- •6.9. Сущность и значение медианы
- •6.10. Понятие о простейших показателях вариации
- •6.11. Среднее квадратической отклонение
- •Для расчёта среднего годового удоя коров
- •6.12. Коэффициент вариации
- •Контрольна вопросы к теме 6
- •Выборочный метод
- •7.1. Сущность генеральной и выборочной совокупности
- •Понятие о стохастической совокупности
- •7.3. Сущность выборочного метопа
- •7.4. Преимущества и недостатки выборочного метода
- •7.5. Способы отбора, их преимущества и недостатки.
- •7.6. Сущность ошибок репрезентативности и порядок их расчета
- •7.7. Понятие о малой выборке. Точечная оценка основных статистических характеристик
- •7.8. Предельная ошибка выборки. Интервальная опенка основных статистических характеристик
- •7.9. Приемы расчета численности выборки при различных способах отбора
- •Контрольные вопросы к теме 7
- •Метод статистических группировок. Статистические таблицы
- •8. Понятие о вторичной (сложной) статистической сводке
- •8.2. Типологические группировки
- •8.3. Структурные группировки
- •8.4. Содержание и значение аналитических группировок. Группировочные признаки
- •8.5. Сущность и порядок проведения простой и аналитической группировки
- •Аналитической группировки
- •Результативными показателями в картофелеводстве
- •8.6. Содержание и значение комбинированной группировки
- •8.7. Сущность и значение статистических таблиц.
- •8.8. Элементарный состав статистических таблиц
- •8.9. Виды и формы статистических таблиц
- •8.10. Вспомогательные и результативные статистические таблицы
- •Результатами производства, 2003 г.
- •Льноперерабатывающих предприятий апк в 2003 г.
- •8.11. Оформление статистических таблиц
- •Контрольные вопросы к теме 8
- •9. Основы дисперсионного метода
- •9.1. Понятие о дисперсионном методе
- •9.2. Виды вариаций Порядок определения объёма вариаций
- •Признака-результата
- •Крестьянских хозяйствах
- •Фитофтороза, на урожайность картофеля
- •Признака-результата
- •9.3. Виды дисперсий. Правило сложения дисперсий
- •9.4. Особенности расчёта исправленных дисперсий
- •9.5. Понятие о критерии р. Фишера
- •9.6. Пример оформления и оценки результатов решения однофакторного дисперсионного комплекса
- •9.7. Двухфакторный дисперсионный комплекс
- •Зерновых культур
- •9.7. Особенности многофакторного дисперсионного комплекса
- •Урожайности зерновых культур
- •Контрольные вопросы к теме 9
- •10. Основы корреляционно-регрессионного
- •10.1. Сущность и виды корреляций
- •10.2. Основные формы корреляционной связи между признаками
- •10.3. Показатели тесноты корреляционных связей. Корреляционное отношение
- •10.4. Коэффициенты прямолинейной парной корреляции
- •10.5. Ранговый коэффициент корреляции
- •10.6. Коэффициент множественной корреляции
- •10.7. Показатели детерминации
- •10.8. Сущность, виды, и значение уравнений регрессии
- •10.9. Уравнение прямолинейной регрессии
- •10.10. Уравнение гиперболической регрессии
- •Регрессии
- •Гиперболической регрессии
- •10.11. Уравнение параболической регрессии
- •Параболической регрессии
- •Параболической регрессии
- •10.12. Уравнение множественной регрессии
- •10.13. Коэффициенты эластичности
- •11. Метод динамических рядов
- •11.1. Сущность динамического ряда
- •11.2. Классификация динамических рядов
- •Сельскохозяйственных предприятиях
- •11.3. Основные показатели динамического ряда
- •11.4. Абсолютные приросты уровней
- •11.5. Темпы роста уровней
- •11.6. Темп прироста уровней
- •11.7. Абсолютное значение одного процента прироста
- •11.9. Приемы выравнивания динамических рядов
- •11.10. Способы аналитического выравнивания динамического рядов
- •11.11. Аналитическое выравнивание по показательной кривой
- •11.12. Аналитическое выравнивание по параболе второго порядка
- •11.13. Аналитическое выравнивание по уравнению гиперболы
- •11.14. Понятие об интерполяции и экстраполяции уровней динамического ряда
- •Контрольные вопросы к теме 11
- •12. Индексный метод
- •12.1. Сущность и значение индексного метода
- •12.2. Индивидуальные и общие индексы
- •12.3. Индексы с постоянными и переменными весами
- •12.4. Индексы постоянного и переменного состава
- •12.5. Средние арифметические и средние гармонические индексы
- •Организации
- •12.6. Практическое применение индексного метода в факторном анализе
- •12.7. Особенности многофакторного индексируемого анализа
- •12.8. Некоторые особенности формализации индексного метода
- •Контрольные вопросы к теме 12
- •Библиографический список
7.7. Понятие о малой выборке. Точечная оценка основных статистических характеристик
Применение выборочного метопа может базироваться на отборе из генеральной совокупности теоретически любого числа статистических единил. Математически доказано, что выборочные совокупности могут быть малые и большие. Если выборка насчитывает не более 20 единиц, то она называется малой, свыше 20 единиц - большой.
Вероятностная оценка результатов малой выборки отличается от оценки в большой выборке тем, что при малом числе наблюдений распределение вероятностей, например, для средней в большей степени зависит от числа отобранных единиц. Английский статистик Вильям Госсет (псевдоним "Стьюдент" ) изучил распределение отклонения выборочных средних от генеральной или стохастической средней и доказал, что опенка расточения между выборочной средней малой выборки и генеральной средней имеет особый талон распределения Распределение Стьюдента получило название закона малых выборок. Было доказано, что при численности выборки более 20 единиц вариационный ряд дает нормальное распределение вероятностей.
Основные статистические
характеристики (средняя, дисперсия,
коэффициент вариации и дp.)
для малых выборок приходится корректировать
через коэффициент
,
т.е. применять точечную
оценку этих
характеристик. Точечная оценка обычно
выражается каким-то общим числом Это
означает, что для малой выборки
рассчитанные выборочные средние,
дисперсии, средние квадратическое
отклонения, коэффициенты вариации и т.
д. необходимо умножить на
Только при этом условии любая статистическая
характеристика может считаться
несмещенной
(состоятельной, действительной).
Не скорректированные статистические характеристики, рассчитанные по данным малой выборки, обычно считаются смещенными (несостоятельными, недействительными) , так как они могут иметь существенные расхождения с аналогичными характеристиками генеральной совокупности и, следовательно, не могvт быть репрезентативны.
Значит, для получения точечной состоятельной оценки по данным малой выборки необходимо найти скорректированные статистические характеристики. Так, среднее значение признака в генеральной совокупности теоретически может быть рассчитано следующим образом:
,
(7.10)
где
— среднее значение признака в генеральной
совокупности;
— среднее значение признака в выборочной
совокупности;
n
- численность выборки.
В самом деле, если из генеральной совокупности выбран только одна статистическая единица, то совершенно очевидно, что ее статистические характеристики не могут быть репрезентативными по отношение к генеральной совокупности. Этому можно найти довольно простое доказательство:
Полученный результат показывает, что если оценивать среднее значение признака в генеральной совокупности по значение признака, получение на основе отбора только одной статистической единицы, то ожидаемое среднее значение теоретически может выражаться бесконечной величиной.
При условии отбора двух
статистических
единиц среднее значение по генеральной
и выборочной совокупностям может
различаться в два раза
;
при трех единицах — в 1,5 раза. Совершенно
очевидно, что точечная оценка среднего
:значения признака в генеральной
совокупности в приведенных примерах
не может считаться состоятельной.
Другое дело, когда численность выборки составляет не менее 20 статистических единиц. В этом случае для получения точечной характеристики в генеральной совокупности поправочной коэффициент практически приближается к единице. И поэтому статистические характеристики, полученные на основе больших выборок, оценивается как несмещенные (состоятельные, действительные). Это означает, что такие выборочные характеристики могут считаться представительными для генеральной статистической совокупности. Например, выборочное по 30 крестьянским хозяйствам показало, что яйценоскость кур - несушек составляет 300 яиц в год. Для нахождения точечной оттенки средней яйценоскости кур-несушек во всех крестьянских хозяйствах можно воспользоваться формулой 7 10:
Следовательно, если применить прием точечной оценки годовой яйценоскости кур-несушек на основе выборочного метопа, то можно утверждать, что средняя яйценоскость в генеральной совокупности будет составлять 310 яиц в год.