
- •Департамент образования, науки и кадров
- •Предисловие
- •Предмет и метод статистики
- •Предмет статистики.
- •Статистическая совокупность и статистическая единица. Статистические признаки и показатели.
- •1.3. Метод статистики. Стадии (этапы) статистического исследования.
- •Современная систематизация статистики в Республике Беларусь. Задачи государственной статистики.
- •Контрольные вопросы к теме 1
- •2. Метод статистического наблюдения
- •2.1. Сущность статистического наблюдения.
- •2.2. Организационно – методический план проведения статистического наблюдения.
- •2.3. Программа статистического наблюдения.
- •2.4. Формы статистического наблюдения.
- •2.5. Статистические формуляры.
- •Виды статистического наблюдения.
- •Способы проведения статистических наблюдений.
- •2.8. Место, сроки и период проведения статистических наблюдений.
- •Ошибки статистического наблюдения и меры борьбы с ними.
- •2.10. Первичная статистическая сводка.
- •Контрольные вопросы к теме 2
- •Метод обсалютных и относительных статистических показателей
- •3.1. Содержание, виды и значения абсолютных статистических показателей.
- •3.2. Сущность и значение относительных статистических показателей.
- •3.3. Виды относительных показателей. Относительные показатели динамики
- •3.4. Относительные показатели структуры.
- •Относительные показатели координации.
- •Относительные показатели интенсивности.
- •Относительные показатели сравнения.
- •Относительные показатели выполнения заказа.
- •Относительные показатели уровня экономического развития.
- •Контрольные вопросы к теме № 3
- •Графический метод
- •4.1. Сущность и значение графического метода.
- •Классификация графических изображений.
- •4.3. Основные требования, предъявляемые к построению координатных диаграмм.
- •4.4. Способы графического изображения показателей динамики и структуры.
- •Способы графического изображения показателей сравнения.
- •Сущность и значение картограмм и картодиаграммы.
- •Контрольная вопросы к теме 4
- •Метод вариационных рядов
- •Сущность вариации. Виды вариационных признаков.
- •5.2. Понятие о вариационных рядах. Ранжированный ряд.
- •По числу работников животноводства
- •5.3. Дискретный ряд распределения.
- •Работников животноводства
- •5.4. Интервальный ряд распределения.
- •Контрольные вопросы к теме 5
- •6. Метод средних величин и показателей вариации
- •6.1. Сущность средних величин.
- •6.2. Средняя арифметическая величина.
- •В ранжированном ряду распределения
- •Ряду распределения
- •6.3. Основные свойства средней арифметической величины.
- •6.4. Средняя хронологическая величина.
- •6.5. Средняя квадратическая величина.
- •Средняя геометрическая величина.
- •6.7 Средняя гармоническая величина.
- •6.8. Структурные среднее. Сущность и значение моды
- •6.9. Сущность и значение медианы
- •6.10. Понятие о простейших показателях вариации
- •6.11. Среднее квадратической отклонение
- •Для расчёта среднего годового удоя коров
- •6.12. Коэффициент вариации
- •Контрольна вопросы к теме 6
- •Выборочный метод
- •7.1. Сущность генеральной и выборочной совокупности
- •Понятие о стохастической совокупности
- •7.3. Сущность выборочного метопа
- •7.4. Преимущества и недостатки выборочного метода
- •7.5. Способы отбора, их преимущества и недостатки.
- •7.6. Сущность ошибок репрезентативности и порядок их расчета
- •7.7. Понятие о малой выборке. Точечная оценка основных статистических характеристик
- •7.8. Предельная ошибка выборки. Интервальная опенка основных статистических характеристик
- •7.9. Приемы расчета численности выборки при различных способах отбора
- •Контрольные вопросы к теме 7
- •Метод статистических группировок. Статистические таблицы
- •8. Понятие о вторичной (сложной) статистической сводке
- •8.2. Типологические группировки
- •8.3. Структурные группировки
- •8.4. Содержание и значение аналитических группировок. Группировочные признаки
- •8.5. Сущность и порядок проведения простой и аналитической группировки
- •Аналитической группировки
- •Результативными показателями в картофелеводстве
- •8.6. Содержание и значение комбинированной группировки
- •8.7. Сущность и значение статистических таблиц.
- •8.8. Элементарный состав статистических таблиц
- •8.9. Виды и формы статистических таблиц
- •8.10. Вспомогательные и результативные статистические таблицы
- •Результатами производства, 2003 г.
- •Льноперерабатывающих предприятий апк в 2003 г.
- •8.11. Оформление статистических таблиц
- •Контрольные вопросы к теме 8
- •9. Основы дисперсионного метода
- •9.1. Понятие о дисперсионном методе
- •9.2. Виды вариаций Порядок определения объёма вариаций
- •Признака-результата
- •Крестьянских хозяйствах
- •Фитофтороза, на урожайность картофеля
- •Признака-результата
- •9.3. Виды дисперсий. Правило сложения дисперсий
- •9.4. Особенности расчёта исправленных дисперсий
- •9.5. Понятие о критерии р. Фишера
- •9.6. Пример оформления и оценки результатов решения однофакторного дисперсионного комплекса
- •9.7. Двухфакторный дисперсионный комплекс
- •Зерновых культур
- •9.7. Особенности многофакторного дисперсионного комплекса
- •Урожайности зерновых культур
- •Контрольные вопросы к теме 9
- •10. Основы корреляционно-регрессионного
- •10.1. Сущность и виды корреляций
- •10.2. Основные формы корреляционной связи между признаками
- •10.3. Показатели тесноты корреляционных связей. Корреляционное отношение
- •10.4. Коэффициенты прямолинейной парной корреляции
- •10.5. Ранговый коэффициент корреляции
- •10.6. Коэффициент множественной корреляции
- •10.7. Показатели детерминации
- •10.8. Сущность, виды, и значение уравнений регрессии
- •10.9. Уравнение прямолинейной регрессии
- •10.10. Уравнение гиперболической регрессии
- •Регрессии
- •Гиперболической регрессии
- •10.11. Уравнение параболической регрессии
- •Параболической регрессии
- •Параболической регрессии
- •10.12. Уравнение множественной регрессии
- •10.13. Коэффициенты эластичности
- •11. Метод динамических рядов
- •11.1. Сущность динамического ряда
- •11.2. Классификация динамических рядов
- •Сельскохозяйственных предприятиях
- •11.3. Основные показатели динамического ряда
- •11.4. Абсолютные приросты уровней
- •11.5. Темпы роста уровней
- •11.6. Темп прироста уровней
- •11.7. Абсолютное значение одного процента прироста
- •11.9. Приемы выравнивания динамических рядов
- •11.10. Способы аналитического выравнивания динамического рядов
- •11.11. Аналитическое выравнивание по показательной кривой
- •11.12. Аналитическое выравнивание по параболе второго порядка
- •11.13. Аналитическое выравнивание по уравнению гиперболы
- •11.14. Понятие об интерполяции и экстраполяции уровней динамического ряда
- •Контрольные вопросы к теме 11
- •12. Индексный метод
- •12.1. Сущность и значение индексного метода
- •12.2. Индивидуальные и общие индексы
- •12.3. Индексы с постоянными и переменными весами
- •12.4. Индексы постоянного и переменного состава
- •12.5. Средние арифметические и средние гармонические индексы
- •Организации
- •12.6. Практическое применение индексного метода в факторном анализе
- •12.7. Особенности многофакторного индексируемого анализа
- •12.8. Некоторые особенности формализации индексного метода
- •Контрольные вопросы к теме 12
- •Библиографический список
7.5. Способы отбора, их преимущества и недостатки.
Отбор статистических единиц из генеральной совокупности может быть произведен no-разному и зависит от многих условий. Выборочный метоп включает следующие способы отбора статистических единиц случайный, механический, типический, серийный, многоступенчатый и др.
Случайный отбор - наиболее простой способ, который представляет такую организацию выборочного наблюдения, при которой отбор статистических единиц из сплошной (генеральной) совокупности производится случайно, наугад или по жребию. При этом обеспечивается равная вероятность каждому элементу генеральной совокупности попасть в выборку. Однако этот способ отбора не может обеспечить минимальную ошибку репрезентативности. Тем не менее, при соблюдении необходимых условий проведения выборочного наблюдения случайный отбор позволяет дать объективную оценку генеральной совокупности.
Случайный отбор может быть повторным и бесповторным. При повторном отборе обследованная выборочная статистическая единица подлежит возврату обратно в генеральную совокупность. Случайный повторный отбор применяют в тех случаях, когда число единиц в генеральной совокупности относительно невелико. Целесообразно отметить, что случайный повторный отбор, имеющий распространение в технике, в социально-экономических исследованиях применяется редко.
При случайном бесповторном отборе статистические единицы наблюдения в генеральную совокупность не возвращаются. Бесповторный отбор применяется в тех случаях, когда генеральная совокупность по числу единил достаточно велика; при этом не требуется возврат отобранных единиц. Эта разновидность случайного отбора по сравнению со случайной повторной выборкой дает более точные результаты.
Случайный бесповторный отбор находит широкое применение в различных статистических работах при изучении, например, качества продукции. Так, при поставках зерна на элеваторы из каждой тарной емкости (кузова грузовика, прицепа и т.п.) в случайном порядке берутся пробы зерна для анализа его качества. Аналогично этому проводится отбор проб при поставках сырья (льнотресты, сахарной свеклы, картофеля, молока, скота и т.д.) на соответствующие перерабатывающие предприятия АПК.
Основные существенные преимущества случайного отбора заключаются в сравнительной простоте и экономичности его проведения по сравнению с другими способами выборки. Эти преимущества благоприятствуют широкому практическому применению случайного отбора во многих сферах деятельности людей Вместе с тем целесообразно отметить, что при проведении случайного отбора может накапливаться максимальная ошибка репрезентативности.
Механический отбор, в отличие от случайной выборки, заключается в отборе статистических единиц из генеральной совокупности в каком-либо механическом порядке. Механическая выборка предполагает определенную последовательность ее проведения: во-первых, все статистические единицы генеральной совокупности размещают по заданному признаку в определенном порядке, например, по алфавиту или по ранжиру; во-вторых, из полученного ряда (генеральной совокупности) отбирают, например, каждую пятую, десятую, двадцатую, сотую и т.д. статистическую единицу для проведения выборочного наблюдения. Промежуток, через который попадают единицы в выборку, зависит от принятой пропорции отбора. Эта пропорция устанавливается отношением численности генеральной совокупности на объем выборки. Так, если предполагается отобрать каждую десятую единицу из общего числа 1000 единиц, то в выборку попадает 100 единиц. Следовательно, из генеральной совокупности может быть взята, например, каждая первая, одиннадцатая, двадцать первая, тридцать первая и т.д. единица. Возможен и другой вариант отбора, т.е. берут, например, каждую пятую, пятнадцатую, двадцать пятую, тридцать пятую, и т.д. единицу. Опыт показывает, что при взятии за начало отсчета числа, лежащего в середине интервала, ошибка выборки будет минимальной.
Механический отбор находит применение в тех случаях, где имеется реальная возможность охватить все статистические единицы генеральной совокупности. Например, при выполнении работ по переписи населения, производственных помещений, машин, оборудования, многолетних насаждений, сельскохозяйственных животных. Так, в процессе проведения всеобщей переписи населения Республики Беларусь 1999 г. для получения ответов на ряд дополнительных вопросов переписного листа проводился 25 % механический отбор.
Механический отбор позволяет свести ошибки репрезентативности до минимума, что является основным его преимуществом. Однако этот способ более трудоемок, менее экономичен и более сложен по сравнению, например, со случайной выборкой. Кроме того, механический отбор ограничен в применении, так как не по всякой генеральной совокупности можно разместить статистические единицы в определенной последовательности.
Типический отбор. При этом способе отбора статистических единиц последовательность выполнения работ заключается в следующем: во-первых, все единицы генеральной совокупности разбиваются на однородные в качественном отношении группы по типическому признаку; во-вторых, из каждой типической группы отбирается намеченное количество статистических единиц по принципу случайной или механической выборки.
Целесообразно отметить, что отбор единиц внутри каждой типической группы может быть как пропорциональным, так и непропорциональным. При пропорциональном отборе число единиц зависят от их общего количества в казной типической группе, при непропорциональном - число отобранных единиц не зависит от представительности типических групп. Например, для проведения выборочного наблюдения необходимо отобрать перерабатывающие предприятия АПК различного профиля: по переработке зерна, картофеля, льнотресты, молока и т.д. В этом случае все перерабатывающие предприятия (генеральную совокупность) необходимо сгруппировать по их типичному производственному профилю, например, зерноперерабатывающие, картофелеперерабатывающие и т.д. Далее, из каждой сформированной группы доля проведения выборочного наблюдения отбираем, скажем, по 20 предприятий независимо от их общего числа в группе. Но так как общее число перерабатывающих предприятий в каждой группе может существенно различаться, то в этом случае имеет место непропорциональный отбор. Если же отбор предприятий из каждой типической группы будет проведен согласно структуре всех предприятий, т.е. по их удельному весу в общей численности, то по каждой типической группе в выборку может попасть не строго по 20, а различное число предприятий. Это означает, что имеет место пропорциональный отбор.
Типический отбор отличается относительной сложностью проведения, повышенной трудоемкостью и невысокой экономичностью, Кроме того, типический отбор, подобно механическому, ограничен в применении . Вместе с тем использование типического отбора позволяет обеспечить минимальную ошибку репрезентативности.
Типический отбор находит применение главным образом в социально-экономических исследованиях, например, при сборе информации о социальных условиях жизни различных категорий и слоев населения.
Серийный отбор. Сущность этого способа значительно отличается от других способов отбора статистических единиц. Серийный отбор проводится в следующем порядке: во-первых, генеральная совокупность разбивается на однотипные в качественном отношении группы, называемые сериями (гнетами); во-вторых, из генеральной совокупности отбирают отдельные серии (гнезда), которые по числу статистических единиц могут быть как равновеликими, так и неравновеликими; в-третьих, в отобранных сериях проводится сплошное наблюдение всех статистических единицах.
Серийная выборка может проводиться в порядке как повторного, так и бесповторного отбора. Отличаясь относительной простотой и экономичностью выполнения, она может обеспечить сравнительно невысокую погрешность результатов выборочного наблюдения.
Серийный (гнездовой) отбор находит применение при сборе статистической информации для проведения социально-экономических исследований, например, при изучении уровня жизни сельского населения.
Особенно широко используется серийный отбор при проведении контроля оплаты за проезд в автобусах, троллейбусах, трамваях, пригородных поездах, где все пассажиры каждого контролируемого транспортного средства представляют собой серию статистических единиц в составе генеральной совокупности (всего пассажиропотока).