
- •Департамент образования, науки и кадров
- •Предисловие
- •Предмет и метод статистики
- •Предмет статистики.
- •Статистическая совокупность и статистическая единица. Статистические признаки и показатели.
- •1.3. Метод статистики. Стадии (этапы) статистического исследования.
- •Современная систематизация статистики в Республике Беларусь. Задачи государственной статистики.
- •Контрольные вопросы к теме 1
- •2. Метод статистического наблюдения
- •2.1. Сущность статистического наблюдения.
- •2.2. Организационно – методический план проведения статистического наблюдения.
- •2.3. Программа статистического наблюдения.
- •2.4. Формы статистического наблюдения.
- •2.5. Статистические формуляры.
- •Виды статистического наблюдения.
- •Способы проведения статистических наблюдений.
- •2.8. Место, сроки и период проведения статистических наблюдений.
- •Ошибки статистического наблюдения и меры борьбы с ними.
- •2.10. Первичная статистическая сводка.
- •Контрольные вопросы к теме 2
- •Метод обсалютных и относительных статистических показателей
- •3.1. Содержание, виды и значения абсолютных статистических показателей.
- •3.2. Сущность и значение относительных статистических показателей.
- •3.3. Виды относительных показателей. Относительные показатели динамики
- •3.4. Относительные показатели структуры.
- •Относительные показатели координации.
- •Относительные показатели интенсивности.
- •Относительные показатели сравнения.
- •Относительные показатели выполнения заказа.
- •Относительные показатели уровня экономического развития.
- •Контрольные вопросы к теме № 3
- •Графический метод
- •4.1. Сущность и значение графического метода.
- •Классификация графических изображений.
- •4.3. Основные требования, предъявляемые к построению координатных диаграмм.
- •4.4. Способы графического изображения показателей динамики и структуры.
- •Способы графического изображения показателей сравнения.
- •Сущность и значение картограмм и картодиаграммы.
- •Контрольная вопросы к теме 4
- •Метод вариационных рядов
- •Сущность вариации. Виды вариационных признаков.
- •5.2. Понятие о вариационных рядах. Ранжированный ряд.
- •По числу работников животноводства
- •5.3. Дискретный ряд распределения.
- •Работников животноводства
- •5.4. Интервальный ряд распределения.
- •Контрольные вопросы к теме 5
- •6. Метод средних величин и показателей вариации
- •6.1. Сущность средних величин.
- •6.2. Средняя арифметическая величина.
- •В ранжированном ряду распределения
- •Ряду распределения
- •6.3. Основные свойства средней арифметической величины.
- •6.4. Средняя хронологическая величина.
- •6.5. Средняя квадратическая величина.
- •Средняя геометрическая величина.
- •6.7 Средняя гармоническая величина.
- •6.8. Структурные среднее. Сущность и значение моды
- •6.9. Сущность и значение медианы
- •6.10. Понятие о простейших показателях вариации
- •6.11. Среднее квадратической отклонение
- •Для расчёта среднего годового удоя коров
- •6.12. Коэффициент вариации
- •Контрольна вопросы к теме 6
- •Выборочный метод
- •7.1. Сущность генеральной и выборочной совокупности
- •Понятие о стохастической совокупности
- •7.3. Сущность выборочного метопа
- •7.4. Преимущества и недостатки выборочного метода
- •7.5. Способы отбора, их преимущества и недостатки.
- •7.6. Сущность ошибок репрезентативности и порядок их расчета
- •7.7. Понятие о малой выборке. Точечная оценка основных статистических характеристик
- •7.8. Предельная ошибка выборки. Интервальная опенка основных статистических характеристик
- •7.9. Приемы расчета численности выборки при различных способах отбора
- •Контрольные вопросы к теме 7
- •Метод статистических группировок. Статистические таблицы
- •8. Понятие о вторичной (сложной) статистической сводке
- •8.2. Типологические группировки
- •8.3. Структурные группировки
- •8.4. Содержание и значение аналитических группировок. Группировочные признаки
- •8.5. Сущность и порядок проведения простой и аналитической группировки
- •Аналитической группировки
- •Результативными показателями в картофелеводстве
- •8.6. Содержание и значение комбинированной группировки
- •8.7. Сущность и значение статистических таблиц.
- •8.8. Элементарный состав статистических таблиц
- •8.9. Виды и формы статистических таблиц
- •8.10. Вспомогательные и результативные статистические таблицы
- •Результатами производства, 2003 г.
- •Льноперерабатывающих предприятий апк в 2003 г.
- •8.11. Оформление статистических таблиц
- •Контрольные вопросы к теме 8
- •9. Основы дисперсионного метода
- •9.1. Понятие о дисперсионном методе
- •9.2. Виды вариаций Порядок определения объёма вариаций
- •Признака-результата
- •Крестьянских хозяйствах
- •Фитофтороза, на урожайность картофеля
- •Признака-результата
- •9.3. Виды дисперсий. Правило сложения дисперсий
- •9.4. Особенности расчёта исправленных дисперсий
- •9.5. Понятие о критерии р. Фишера
- •9.6. Пример оформления и оценки результатов решения однофакторного дисперсионного комплекса
- •9.7. Двухфакторный дисперсионный комплекс
- •Зерновых культур
- •9.7. Особенности многофакторного дисперсионного комплекса
- •Урожайности зерновых культур
- •Контрольные вопросы к теме 9
- •10. Основы корреляционно-регрессионного
- •10.1. Сущность и виды корреляций
- •10.2. Основные формы корреляционной связи между признаками
- •10.3. Показатели тесноты корреляционных связей. Корреляционное отношение
- •10.4. Коэффициенты прямолинейной парной корреляции
- •10.5. Ранговый коэффициент корреляции
- •10.6. Коэффициент множественной корреляции
- •10.7. Показатели детерминации
- •10.8. Сущность, виды, и значение уравнений регрессии
- •10.9. Уравнение прямолинейной регрессии
- •10.10. Уравнение гиперболической регрессии
- •Регрессии
- •Гиперболической регрессии
- •10.11. Уравнение параболической регрессии
- •Параболической регрессии
- •Параболической регрессии
- •10.12. Уравнение множественной регрессии
- •10.13. Коэффициенты эластичности
- •11. Метод динамических рядов
- •11.1. Сущность динамического ряда
- •11.2. Классификация динамических рядов
- •Сельскохозяйственных предприятиях
- •11.3. Основные показатели динамического ряда
- •11.4. Абсолютные приросты уровней
- •11.5. Темпы роста уровней
- •11.6. Темп прироста уровней
- •11.7. Абсолютное значение одного процента прироста
- •11.9. Приемы выравнивания динамических рядов
- •11.10. Способы аналитического выравнивания динамического рядов
- •11.11. Аналитическое выравнивание по показательной кривой
- •11.12. Аналитическое выравнивание по параболе второго порядка
- •11.13. Аналитическое выравнивание по уравнению гиперболы
- •11.14. Понятие об интерполяции и экстраполяции уровней динамического ряда
- •Контрольные вопросы к теме 11
- •12. Индексный метод
- •12.1. Сущность и значение индексного метода
- •12.2. Индивидуальные и общие индексы
- •12.3. Индексы с постоянными и переменными весами
- •12.4. Индексы постоянного и переменного состава
- •12.5. Средние арифметические и средние гармонические индексы
- •Организации
- •12.6. Практическое применение индексного метода в факторном анализе
- •12.7. Особенности многофакторного индексируемого анализа
- •12.8. Некоторые особенности формализации индексного метода
- •Контрольные вопросы к теме 12
- •Библиографический список
5.4. Интервальный ряд распределения.
Во многих случаях, кота статистическая совокупность включает большое или тем более бесконечное число вариант, что чаще всего встречается при непрерывной вариации, практически невозможно и нецелесообразно формировать группу единиц для каждой варианты. В таких случаях объединение статистических единиц в группы возможно лишь на базе интервала, т.е. такой группы, которая имеет определенные пределы значений варьирующего признака. Эти пределы обозначаются двумя числами, указывающими верхнюю и нижнюю границы каждой группы. Применение интервалов приводит к формированию интервального ряда распределения.
Интервальный рад - это вариационный ряд, варианты которого представлены в виде интервалов.
Интервальный ряд может формироваться с равными и неравными интервалами, при этом выбор принципа построения этого ряда зависит главным образом от степени представительности и удобности статистической совокупности. Если совокупность достаточно велика (представительна) по числу единиц и вполне однородна по своему составу, то в основу формирования интервального ряда целесообразно положить равенства интервалов. Обычно по этому принципу образуют интервальный ряд по тем совокупностям, где размах вариации сравнительно невелик, т.е. максимальная и минимальная варианты различаются между собой обычно в несколько раз. При этом величина равных интервалов рассчитывается отношением размаха вариации признака к заданному числу образуемых интервалов. Для определения равного интервала может быть ииспользована формула Стерджесса (обычно при небольшой вариации интервальных признаков и большом числе единиц в статистической совокупности):
(5.1)
где хi - величина равного интервала; X max, X min — максимальная и минимальная варианты в статистической совокупности; n. — число единиц в совокупности.
Пример. Целесообразно рассчитать размер равного интервала по плотности радиоактивного загрязнения цезием – 137 в 100 населенных пунктах Краснопольского района Могилевской области, если известно, что начальная (минимальная) варианта равна I км/км2, конечная (максимальная) - 65 ки/км2. Воспользовавшись формулой 5.1. получим:
Следовательно, чтобы сформировать интервальный ряд с равными интервалами по плотности загрязнения цезием - 137 населенных пунктов Краснопольского района, размер равного интервала может составить 8 ки/км2.
В условиях неравномерного распределения т.е. когда максимальная и минимальная варианты сотни раз, при формировании интервального ряда можно применить принцип неравных интервалов. Неравные интервалы обычно увеличиваются по мере перехода к большим значениям признака.
По форме интервалы могут быть закрытыми и открытыми. Закрытыми принято называть интервалы, у которых обозначены как нижняя, так и верхняя границы. Открытые интервалы имеют только одну границу: в первом интервале – верхняя, в последнем — нижняя граница.
Оценку интервальных рядов, особенно с неравным интервалами, целесообразно проводить с учетом плотности распределения, простейшим способом расчета которого является отношение локальной частоты (или частости) к размеру интервала.
Для практического формирования интервального ряда можно воспользоваться макетом табл. 5.3.
Т а б л и ц а 5.3. Порядок формирования интервального ряда населённых пунктов Краснопольского района по плотности радиоактивного загрязнения цезием –137
№ интервала |
Интервалы по плотности загрязнения, ки/км2 |
Частотные знаки |
Локальные частоты |
Накопленные частоты |
Срединные значения интервала |
Плотность распределения |
|
|
|
fл |
fн |
x |
П |
1 |
1-9,0 |
///// |
5 |
5 |
5,0 |
0,625 |
2 |
9,1-17,0 |
/////////// |
11 |
16 |
13,0 |
1,375 |
3 |
17,1-25,0 |
////////////// |
14 |
30 |
21,0 |
1,750 |
4 |
25,1-33,0 |
///////////////////// |
21 |
51 |
29,0 |
2,625 |
5 |
33,1-41,0 |
////////////////////// |
22 |
73 |
37,0 |
2,750 |
6 |
41,1-49,0 |
/////////////// |
15 |
88 |
45,0 |
1,875 |
7 |
49,1-57,0 |
//////// |
8 |
96 |
53,0 |
1,000 |
8 |
57,1-65,0 |
//// |
4 |
100 |
61,0 |
0,500 |
Итого |
- |
100 |
- |
- |
- |
Основное преимущество интервального ряда — его предельная компактность. в то же время в интервальном ряду распределения индивидуальные варианты признака скрыты в соответствующих интервалах
При графическом изображении интервального ряда в системе прямоугольных координат на оси абсцисс откладывают верхние границы интервалов, на ос ординат — локальные частоты ряда. Графическое построение интервального ряда отличается от построения полигона распределения тем, что каждый интервал имеет нижнюю и верхнею границы, а одному какому- либо значению ординаты соответствуют две абсциссы. Поэтому на графике интервального ряда отмечается не точка, как в полигоне, а линия, соединяющая две точку. Эти горизонтальные линии соединяются друг с другом вертикальными линиями и получается фигура ступенчатого многоугольника, который принято называть гистограммой распределения (рис.5.3).
При графическом построении интервального ряда по достаточно большой статистической совокупности гистограмма приближается к симметричной форме распределения. В тех же случаях, где статистическая совокупность невелика, как правило, формируется асимметричная гистограмма.
В некоторых случаях имеется целесообразность в формировании ряда накопленных частот, т.е. кумулятивного ряда. Кумулятивный ряд можно образовать на основе дискретного либо интервального ряда распределения. При графическом изображении кумулятивного ряда в системе прямоугольных координат на оси абсцисс откладывают варианты, на оси ординат — накопленные частоты (частости). Полученную при этом кривую линию принято называть кумулятой распределения (рис.5.4).
Формирование и графическое изображение различных видов вариационных рядов способствует упрощенному расчету основных статистических характеристик, которые подробно рассматриваются в теме 6, помогает лучше понять сущность законов распределения статистической совокупности. Анализ вариационного ряда приобретает особенное значение в тех случаях, когда необходимо выявить и проследить зависимость между вариантами и частотами (частостями). Эта зависимость проявляется в том, что число случаев, приходящихся на каждую варианту, определенным образом связано с величиной этой варианты, т.е. с возрастанием значений варьирующего признака частоты (частости) этих значений испытывают определенные, систематические изменения. Это означает, что числа в столбце частот (частостей) подвержены не хаотическим колебаниям, а изменяются в определенном направлении, в определенном порядке и последовательности.
Если частоты в своих изменениях обнаруживают определенную систематичность, то это означает, что мы находимся на пути к выявлению закономерности. Система, порядок, последовательность в изменении частот - это отражение общих причин, общих условий, характерных для всей совокупности.
Не следует считать, что закономерность распределения всегда дается в готовом виде. Встречается довольно много вариационных рядов, в которых частоты причудливо скачут, то возрастая, то уменьшаясь. В таких случаях целесообразно выяснить, с каким распределением имеет дело исследователь: то ли этому распределению вовсе не присущи закономерности, то его характер еще не выявлен: Первый случай встречается редко, второй же, второй же случай - явление довольно частое и весьма распространенное.
Так, при формировании интервального ряда общее число статистических единиц может быть небольшим, и в каждый интервал попадает малое число вариант (например, 1-3 единицы). В таких случаях рассчитывать на проявление какой-либо закономерности не приходится. Для того чтобы на основе случайных наблюдений получился закономерный результат, необходимо вступление в силу закона больших чисел, т.е. чтобы на каждый интервал приходилось бы не несколько, а десятки и сотни статистических единиц. С этой целью надо стараться, по возможности увеличивать число наблюдений. Это самый верный способ обнаружения закономерности в массовых процессах. Если же не представляется реальная возможность увеличить число наблюдений, то выявление закономерности может быть достигнуто уменьшением числа интервалов в ряду распределения. Уменьшая число интервалов в вариационном ряду, тем самым увеличивается численность частот в каждом интервале. Это означает, что случайные колебания каждой статистической единицы накладываются друг на друга, "сглаживается", превращаясь в закономерность.
Формирование и построение вариационных рядов позволяет получить лишь общую, приближенную картину распределения статистической совокупности. Например, гистограмма лишь в грубой форме выражает зависимость между значениями признака и его частотами (частостями) Поэтому вариационные ряды по существу являются лишь основой для дальнейшего, углубленного изучения внутренней закономерности статического распределения.