Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ряды_окончательный вариант2013.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.55 Mб
Скачать

§4. Степенные ряды

До сих пор мы рассматривали ряды, членами которых были числа, т.е. числовые ряды. Перейдем к рассмотрению рядов, членами которых являются функции, в частности, степенные функции с целыми неотрицательными показателями степени:

(4.1)

Определение. Ряд вида (4.1) называется степенным, а числа называются коэффициентами степенного ряда.

Рассматривают и степенные ряды более общего вида:

(4.2)

(по степеням ). Такой ряд не отличается существенно от ряда вида (4.1), ибо приводится к нему простой заменой переменной: .

Определение. Множество значений , при которых степенной ряд (4.1) или (4.2) сходится, называется областью сходимости степенного ряда.

Структура области сходимости степенного ряда устанавливается с помощью следующей теоремы:

Теорема Абеля

1) Если степенной ряд вида (4.1), т.е. по степеням , сходится при значении (отличном от нуля), то он сходится, и притом абсолютно, при всех значениях таких, что .

2) Если степенной ряд вида (4.1) расходится при значении , то он расходится при всех значениях таких, что .

Из теоремы Абеля вытекает следующая теорема.

Теорема. Областью сходимости степенного ряда вида (4.2), т.е. ряда по степеням , является интервал с центром в точке и с концами в точках и .

Число получило название радиуса сходимости, а интервал интервала сходимости степенного ряда. На концах интервала сходимости, т.е. при и вопрос о сходимости или расходимости данного ряда решается индивидуально для каждого конкретного ряда.

У некоторых рядов интервал сходимости вырождается в точку (при ), у других охватывает всю числовую ось (при ).

Для начала укажем способ определения интервала сходимости степенного ряда на примере ряда (4.1).

Рассмотрим ряд, составленный из абсолютных величин членов этого ряда:

(4.3)

Т.к. при каждом конкретном ряд (4.3) является числовым знакоположительным рядом, то для выяснения вопроса о его сходимости можно воспользоваться признаком Даламбера:

Допустим, что существует

.

Тогда, по признаку Даламбера ряд сходится, если (т.е. при ), и расходится, если (т.е. при ).

Следовательно, ряд (4.1) сходится абсолютно при и расходится при , и интервалом сходимости является интервал , а радиусом сходимости является число .

При признак Даламбера не дает ответа на вопрос о сходимости, поэтому необходимо, подставляя значения в ряд (4.1), исследовать получающиеся числовые ряды в каждом конкретном случае.

Замечание. Интервал сходимости можно найти, используя радикальный признак Коши (также применяя его к ряду (4.3)):

.

Примеры

Найти области сходимости степенных рядов:

1)

Решение. Рассмотрим ряд, составленный из абсолютных величин членов данного ряда

.

Применим к нему признак Даламбера.

Отсюда получаем интервал сходимости: .

Исследуем сходимость на концах интервала:

При исходный ряд принимает вид: – это обобщенный гармонический ряд при , а значит, он сходится. При получаем абсолютно сходящийся ряд , т.к. ряд, составленный из модулей его членов, сходится.

Следовательно, интервал сходимости ряда имеет вид: .

2) .

Решение. Ряд, составленный из модулей, имеет вид:

.

ряд сходится при любых . Таким образом, интервалом сходимости является интервал .

3)

Решение. Ряд, составленный из абсолютных величин членов данного ряда , исследуем с помощью радикального признака Коши:

Следовательно, область сходимости ряда состоит из одной точки .

4)

Решение

.

Отсюда получаем интервал сходимости: .

При исходный ряд имеет вид: – это расходящийся ряд (обобщенный гармонический при ). Подставляя , получаем условно сходящийся ряд . Окончательно, интервал сходимости ряда имеет вид: .

Свойства степенных рядов

1. Сумма степенного ряда является непрерывной функцией во всем интервале сходимости ряда.

2. Степенной ряд можно почленно интегрировать по любому отрезку , лежащему в интервале сходимости

.

3. Степенной ряд внутри интервала сходимости можно почленно дифференцировать сколь угодно раз. При этом будут получаться степенные ряды с тем же радиусом сходимости:

Задачи. Найти области сходимости степенных рядов:

60 61. 62.

63. 64. 65.

66. 67. 68.

69. 70. 71.

72. 73. 74.

75. 76. 77.

78. 79. 80.

81. 82. 83.

84. 85. (Указание: при исследовании сходимости на правом конце интервала учесть, что факториалы больших чисел могут быть выражены приближенно формулой Стирлинга ).