
- •Водоподготовка и водно-химические режимы в теплоэнергетике
- •Предисловие
- •Часть I. Водоподготовка Глава первая Основные характеристики природной воды
- •1.1. Поступление примесей в воду
- •1.2. Классификация, характеристика вод и их примесей
- •1.3. Характеристика ионизированных примесей
- •1.4. Кремнесодержащие соединения и органические примеси
- •1.5. Закономерности изменения количественного состава примесей по районам и сезонам для поверхностных и подземных вод
- •1.6. Технологические, качественные показатели воды
- •1.7. Биологические показатели качества воды
- •Глава вторая Вода в теплоэнергетике
- •2.1. Применение воды в качестве теплоносителя
- •2.2. Принципиальные схемы обращения воды в тракте
- •2.3. Источники загрязнения
- •Характеристика загрязнений трактов тэс и аэс
- •2.4. Влияние примесей воды на надежность работы теплоэнергетического оборудования
- •2.5. Выбор водоисточника и производительности водоподготовительных установок
- •Глава третья
- •Глава четвертая Предварительная очистка воды и физико-химические процессы
- •4.1. Очистка воды методом коагуляции
- •4.2. Осаждение методами известкования и содоизвесткования
- •Глава пятая Фильтрование воды на механических фильтрах
- •Фильтрующие материалы и основные характеристики структуры фильтрованных слоев
- •Глава шестая Обессоливание воды
- •6.1. Физико-химические основы ионного обмена
- •6.2. Ионообменные материалы и их характеристики
- •6.3. Технология ионного обмена
- •6.4. Малосточные схемы ионитных водоподготовок
- •6.5. Автоматизация водоподготовительных установок
- •6.6. Перспективные технологии водоочистки
- •6.6.1. Противоточная технология ионирования
- •Назначение и область применения
- •Основные принципиальные схемы впу
- •Глава седьмая Термический метод очистки воды
- •7.1. Метод дистилляции
- •7.2. Предотвращение накипеобразования в испарительных установках физическими методами
- •7.3. Предотвращение накипеобразования в испарительных установках химическими, конструктивными и технологическими методами
- •Глава восьмая Очистка высокоминерализованных вод
- •8.1. Обратный осмос
- •8.2. Электродиализ
- •Глава девятая Водоподготовка в тепловых сетях с непосредственным водозабором
- •9.1. Основные положения
- •Нормы органолептических показателей воды
- •Нормы бактериологических показателей воды
- •Показатели пдк (нормы) химического состава воды
- •9.2. Подготовка добавочной воды методом н-катионирования с голодной регенерацией
- •9.3. Снижение карбонатной жесткости (щелочности) добавочной воды методом подкисления
- •9.4. Декарбонизация воды методом известкования
- •9.6. Магнитная противонакипная обработка добавочной воды
- •9.7. Подготовка воды для закрытых тепловых сетей
- •9.8. Подготовка воды для местных систем горячего водоснабжения
- •9.9. Подготовка воды для отопительных систем теплоснабжения
- •9.10. Технология обработки воды комплексонами в системах теплоснабжения
- •Глава десятая Очистка воды от растворенных газов
- •10.1. Общие положения
- •10.2. Удаление свободной углекислоты
- •Высота слоя в метрах насадки из колец Рашига определяется из уравнения:
- •10.3. Удаление кислорода физико-химическими методами
- •10.4. Деаэрация в деаэраторах атмосферного и пониженного давления
- •10.5. Химические методы удаления газов из воды
- •Глава одиннадцатая Стабилизационная обработка воды
- •11.1. Общие положения
- •11.2. Стабилизация воды подкислением
- •11.3. Фосфатирование охлаждающей воды
- •11.4. Рекарбонизация охлаждающей воды
- •Глава двенадцатая
- •Применение окислителей для борьбы
- •С биологическим обрастанием теплообменников
- •И обеззараживания воды
- •Глава тринадцатая Расчет механических и ионообменных фильтров
- •13.1. Расчет механических фильтров
- •13.2. Расчет ионитных фильтров
- •Глава четырнадцатая Примеры расчета водоподготовительных установок
- •14.1. Общие положения
- •14.2. Расчет установки химического обессоливания с параллельным включением фильтров
- •14.3. Расчет декарбонизатора с насадкой из колец Рашига
- •14.4. Расчет фильтров смешанного действия (фсд)
- •14.5. Расчет обессоливающей установки с блочным включением фильтров (расчет «цепочек»)
- •Особые условия и рекомендации
- •Расчет н-катионитных фильтров 1-й ступени ()
- •Расчет анионитных фильтров 1-й ступени (а1)
- •Расчет н-катионитных фильтров 2-й ступени ()
- •Расчет анионитных фильтров 2-й ступени (а2)
- •14.6. Расчет электродиализной установки
- •Глава пятнадцатая краткие технологии очистки конденсатов
- •15.1. Электромагнитный фильтр (эмф)
- •15.2. Особенности осветления турбинных и производственных конденсатов
- •Глава шестнадцатая Краткие технологии очистки сточных вод теплоэнергетики
- •16.1. Основные понятия о сточных водах тэс и котельных
- •16.2. Воды химводоочисток
- •16.3. Отработавшие растворы от промывок и консервации теплосилового оборудования
- •16.4. Теплые воды
- •16.5.Воды гидрозолоудаления
- •16.6. Обмывочные воды
- •16.7. Нефтезагрязненные воды
- •Часть II. Водно-химический режим
- •Глава вторая Химический контроль – основа водно-химического режима
- •Глава третья коррозия металла паросилового оборудования и методы борьбы с ней
- •3.1. Основные положения
- •3.2. Коррозия стали в перегретом паре
- •3.3. Коррозия тракта питательной воды и конденсатопроводов
- •3.4. Коррозия элементов парогенераторов
- •3.4.1. Коррозия парообразующих труб и барабанов парогенераторов во время их эксплуатации
- •3.4.2. Коррозия пароперегревателей
- •3.4.3. Стояночная коррозия парогенераторов
- •3.5. Коррозия паровых турбин
- •3.6. Коррозия конденсаторов турбин
- •3.7. Коррозия оборудования подпиточного и сетевого трактов
- •3.7.1. Коррозия трубопроводов и водогрейных котлов
- •3.7.2. Коррозия трубок теплообменных аппаратов
- •3.7.3. Оценка коррозионного состояния действующих систем горячего водоснабжения и причины коррозии
- •3.8. Консервация теплоэнергетического оборудования и теплосетей
- •3.8.1. Общее положение
- •3.8.2. Способы консервации барабанных котлов
- •3.8.3. Способы консервации прямоточных котлов
- •3.8.4. Способы консервации водогрейных котлов
- •3.8.5. Способы консервации турбоустановок
- •3.8.6. Консервация тепловых сетей
- •3.8.7. Краткие характеристики применяемых химических реагентов для консервации и меры предосторожности при работе с ними Водный раствор гидразингидрата n2н4·н2о
- •Водный раствор аммиака nh4(oh)
- •Трилон б
- •Тринатрийфосфат Na3po4·12н2о
- •Едкий натр NaOh
- •Силикат натрия (жидкое стекло натриевое)
- •Гидроксид кальция (известковый раствор) Са(он)2
- •Контактный ингибитор
- •Летучие ингибиторы
- •Глава четвертая отложения в энергетическом оборудовании и способы устранения
- •4.1. Отложения в парогенераторах и теплообменниках
- •4.2. Состав, структура и физические свойства отложений
- •4.3. Образование отложений на внутренних поверхностях нагрева парогенераторов с многократной циркуляцией и теплообменников
- •4.3.1. Условия образования твердой фазы из солевых растворов
- •4.3.2. Условия образования щелочно-земельных накипей
- •4.3.3. Условия образования ферро - и алюмосиликатных накипей
- •4.3.4. Условия образования железоокисных и железофосфатных накипей
- •4.3.5. Условия образования медных накипей
- •4.3.6. Условия образования отложений легкорастворимых соединений
- •4.4. Образование отложений на внутренних поверхностях прямоточных парогенераторов
- •4.5. Образование отложений на охлаждаемых поверхностях конденсаторов и по такту охлаждающей воды
- •4.6. Отложения по паровому тракту
- •4.6.1. Поведение примесей пара в пароперегревателе
- •4.6.2. Поведение примесей пара в проточной части паровых турбин
- •4.7. Образование отложений в водогрейном оборудовании
- •4.7.1. Основные сведения об отложениях
- •4.7.2. Организация химического контроля и оценка интенсивности накипеобразования в водогрейном оборудовании
- •4.8. Химические очистки оборудования тэс и котельных
- •4.8.1. Назначение химических очисток и выбор реагентов
- •4.8.2. Эксплуатационные химические очистки паровых турбин
- •4.8.3. Эксплуатационные химические очистки конденсаторов и сетевых подогревателей
- •4.8.4. Эксплуатационные химические очистки водогрейных котлов Общие положения
- •Технологические режимы очистки
- •4.8.5. Важнейшие реагенты для удаления отложений из водогрейных и паровых котлов низкого и среднего давлений
- •Глава пятая водно-химический режим (вхр) в энергетике
- •5.1. Водно-химические режимы барабанных котлов
- •5.1.1. Физико-химическая характеристика внутрикотловых процессов
- •5.1.2. Методы коррекционной обработки котловой и питательной воды
- •5.1.2.1. Фосфатная обработка котловой воды
- •5.1.2.2. Амминирование и гидразинная обработка питательной воды
- •5.1.3. Загрязнения пара и способы их удаления
- •5.1.3.1. Основные положения
- •5.1.3.2. Продувка барабанных котлов тэс и котельных
- •5.1.3.3. Ступенчатое испарение и промывка пара
- •5.1.4. Влияние водно-химического режима на состав и структуру отложений
- •5.2. Водно-химические режимы блоков скд
- •5.3. Водно-химический режим паровых турбин
- •5.3.1. Поведение примесей в проточной части турбин
- •5.3.2. Водно-химический режим паровых турбин высоких и сверхвысоких давлений
- •5.3.3. Водно-химический режим турбин насыщенного пара
- •5.4. Водный режим конденсаторов турбин
- •5.5. Водно-химический режим тепловых сетей
- •5.5.1. Основные положения и задачи
- •5.5.2. Источники загрязнения воды тепловых сетей окислами железа
- •5.5.3. Повышение надежности водно-химического режима теплосетей
- •5.5.4. Особенности водно-химического режима при эксплуатации водогрейных котлов, сжигающих мазутное топливо
- •5.6. Проверка эффективности проводимых на тэс, котельных водно-химических режимов
- •Часть III Случаи аварийных ситуаций в теплоэнергетике из-за нарушений водно-химического режима
- •Оборудование водоподготовительных установок (впу) останавливает котельную и заводы
- •Карбонат кальция задает загадки…
- •Магнитная обработка воды перестала предотвращать карбонатно-кальциевое накипеобразование. Почему?
- •Как предупредить отложения и коррозию в небольших водогрейных котлах
- •Какие соединения железа осаждаются в водогрейных котлах?
- •В трубках псв образуются отложения из силиката магния
- •Как взрываются деаэраторы?
- •Как спасти трубопроводы умягченной воды от коррозии?
- •Соотношение концентраций ионов в исходной воде определяет агрессивность котловой воды
- •Почему «горели» трубы только заднего экрана?
- •Как удалять из экранных труб органо-железистые отложения?
- •Химические «перекосы» в котловой воде
- •Эффективна ли периодическая продувка котлов в борьбе с железоокисным преобразованием?
- •Свищи в трубах котла появились до начала его эксплуатации!
- •Почему прогрессировала стояночная коррозия в самых «молодых» котлах?
- •Почему разрушались трубы в поверхностном пароохладителе?
- •Чем опасен котлам конденсат?
- •Основные причины аварийности тепловых сетей
- •Проблемы котельных птицепрома Омского региона
- •Почему не работали цтп в Омске
- •Причина высокой аварийности систем теплоснабжения в Советском районе г. Омска
- •Почему высока коррозионная аварийность на новых трубопроводах теплосети?
- •Сюрпризы природы? Белое море наступает на Архангельск
- •Река Омь угрожает аварийным остановом теплоэнергетического и нефтехимического комплексов г. Омска?
- •– Увеличена дозировка коагулянта на предочистку;
- •Выписка из «Правил технической эксплуатации электрических станций и сетей», утв. 19.06.2003
- •Требования к приборам ахк (Автоматика химического контроля)
- •Требования к средствам лабораторного контроля
- •Сравнение технических характеристик приборов различных фирм производителей
- •Содержание
- •Глава 10. Очистка воды от растворенных газов 112
- •Глава 4. Отложения в энергетическом оборудовании
- •Глава 5. Водно-химические режимы (вхр) в энергетике 256
- •Часть III. Случаи аварийных ситуаций в теплоэнергетике по вине водно-химического режима
5.1.4. Влияние водно-химического режима на состав и структуру отложений
Выполнение регламентируемых показателей по качеству питательной и котловой воды не может полностью исключить образование отложений в экранных трубах котлов. На скорость образования отложений оказывают влияние различные факторы, и прежде всего тепловое напряжение, качество питательной и котловой воды и рабочие параметры среды.
Оценку состояния водно-химического режима ведут по результатам оперативного контроля показателей качества питательной и котловой воды. Объем и периодичность оперативного контроля определяют для каждой электростанции исходя из местных условий эксплуатации. Итоговую оценку состояния водно-химического режима за конкретный период получают по изменению температуры металла труб и загрязненности внутренней поверхности труб, определенной методом выборочной вырезки контрольных образцов.
Для контроля за изменением температуры экранных труб в них вваривают специальные температурные вставки с встроенными термопарами. Показания термопар выводят на регистрирующий прибор. Температурные вставки обычно устанавливают в зоне повышенных тепловых напряжений, т. е. в наиболее благоприятных условиях для образования отложений.
При отсутствии температурного контроля металла производят выборочную вырезку контрольных образцов. Зоны экранной поверхности, из которых должны производиться вырезки контрольных образцов, уточняют для каждого типа котлов в соответствии с особенностями топочного режима, расположением горелочных устройств, схемы циркуляции и вида сжигаемого топлива. Периодичность вырезок зависит от вида сжигаемого топлива и составляет для котлов, работающих на жидком топливе, 10 000–15 000 ч и на твердом топливе 18 000–21 000 ч.
Ориентировочный объем вырезок включает следующие поверхности: экономайзер – первая ступень (вход и выход), вторая ступень (выход); экранная поверхность – чистый отсек (фронтовой, задний и боковой экраны), солевой отсек (боковой экран слева и оправа); пароперегреватель – первая и вторая ступень (участки труб в районе гиба). Учет вырезок контрольных образцов целесообразно осуществлять по развернутым формулярам котлов. Вырезку образцов выполняют автогенной горелкой, а дальнейшее разделение каждого образца – на фрезерном или продольно-строгальном станке. Каждый образец разрезают вдоль по линии раздела огневой и тыловой сторон, затем поперек на отдельные участки для определения загрязненности и химического анализа отложений.
Перед снятием отложений на химический анализ осматривают внутреннюю поверхность трубы для оценки толщины, плотности и равномерности отложений. Для химического анализа снимают отложения только с огневой стороны послойно – вначале мягкие, затем твердые.
Загрязненность определяют методом катодного травления отдельно участков с огневой и тыловой сторон образца. После катодного травления осматривают состояние металла образцов, отмечая коррозионные разрушения. При наличии коррозионных язвин определяют их количество, размеры, глубину, а также характер разрушения металла в целом.
Четкое выполнение определенной системы контроля за состоянием поверхностей нагрева котлов позволяет по состоянию металла, структуре отложений, а также их составу оценить надежность водно-химического режима за конкретный период.
В табл. 5.1. приведен химический состав отложений котлов различных типов и рабочих параметров электростанций. Качество питательной воды этих котлов по всем составляющим соответствует нормативным значениям ПТЭ. Коррекционную обработку котловой воды осуществляют различными реагентами, тринатрийфосфатом и трилоном Б. Данные табл. 5.1 могут характеризовать некоторые особенности коррекционной обработки котловой воды топочного режима, а также водно-химического режима в целом. Так, фосфатная обработка котловой воды всех приведенных в табл. 5.1 котлов, кроме ПК-14, выполняется в оптимальном режиме. В составе отложений содержание Р2О5 эквивалентно сумме СаО + MgO гидроксилаппатита или фосфорита кальция. Образование феррофосфата в этих условиях маловероятно.
В отложениях котла ПК-14 содержание Р2О5 значительно превышает сумму CaO + MgO из-за поддержания в котловой воде повышенного избытка фосфатов, и здесь возможно образование феррофосфата. В рассматриваемом случае дозу тринатрийфосфата целесообразно снизить, а выполнение нормативного значения рН котловой воды можно обеспечить подщелачиванием раствора тринатрийфосфата едким натром.
В отложениях котла TП-200 повышено содержание кремниевых соединений. Отложения очень плотные и трудноудаляемые в процессе химической очистки. Образование таких отложений обычно происходит при относительно низкой щелочности котловой воды. Здесь будет полезным внедрение подщелачивания котловой воды для перевода кремниевых соединений в хорошо растворимый силикат натрия.
О присутствии в отложениях котлов БКЗ-320 продуктов высокотемпературного термолиза органических соединений свидетельствует показатель п. п. п. (потери при прокаливании).
Отложения, содержащие в своем составе такие вещества, имеют относительно плотную структуру и почти не растворяются в минеральных кислотах. В связи с низкой теплопроводностью таких отложений наличие их даже при относительно невысоких тепловых нагрузках приводит к перегреву металла с последующим разрушением. Сопоставление данных по составу отложений труб заднего и бокового экранов чистого отсека всех котлов свидетельствует о повышенном тепловом напряжении в зоне заднего экрана, так как в отложениях этой поверхности высокое содержание меди.
Повышенное содержание кремнекислых соединений в отложениях котла БК3-75, работающего в комплексонном водном режиме, является следствием низкой щелочности котловой воды. Для комплексонной обработки целесообразно использовать щелочной раствор трилона Б. В составе отложений на экранных поверхностях этого котла невысоко содержание катионов кальция и магния. Это обстоятельство свидетельствует об эффективности процесса комплексообразования трилоном Б этих катионов. Образовавшиеся при этом ЭДТАцетаты кальция и магния в условиях параметров котловой воды не подвержены термическому разложению и удаляются из котла продувкой. Высокое содержание меди в отложениях труб заднего экрана, поверхности с повышенными тепловыми потоками следует объяснить протеканием процесса термолиза ЭДТАцетата меди, в результате которого происходит образование медистых отложений. ЭДТАцетат меди имеет наименьшую термическую устойчивость в сравнении с ЭДТАцетатами железа, кальция и магния. Так, при 300–320 °С отмечается практически полное разложение его.