Скачиваний:
2087
Добавлен:
12.06.2014
Размер:
9.53 Mб
Скачать

11.3. Фосфатирование охлаждающей воды

Этот метод обработки применяют при щелочности добавочной воды, не превышающей 3–4 ммоль/дм3. Механизм стабилизационной обработки воды при добавлении фосфатов в небольшой концентрации связан с их адсорбцией на поверхности зародышевых кристаллов СаСО3. Это вызывает замедление дальнейшей кристаллизации и стабилизацию пересыщенных растворов Са(НСО3)2 в связи с повышением Жк. пр циркуляционной воды («пороговый эффект»). Стабилизирующим действием обладают соли различных фосфорных кислот, и наиболее часто применяют гексаметафосфат натрия (NаРО3)6 и тринатрийфосфат, с помощью которых можно стабилизировать карбонатную жесткость циркуляционной воды Жк. пр на уровне 4–6,5 ммоль/дм3 в зависимости от солевого состава окисляемости воды. Доза фосфата не поддается теоретическому расчету и составляет обычно 2–2,7 мг/дм3 в пересчете на Р2О5. С течением времени стабилизирующие свойства гексаметафосфата натрия теряются за счет гидролиза:

(11.9)

поэтому требуется непрерывное дозирование этого реагента в охлаждающую воду (рис. 11.3).

Рис. 11.3. Схема фосфатитования циркуляционной воды:

1 – вода; 2 – пар; 3 – бак для растворения гексаметафосфата; 4 – дозирующий бачок; 5 – приемный колодец; 6 – циркуляционный насос

Дозируемый раствор гексаметафосфата должен иметь концентрацию менее 0,1 % во избежание выделения шлама в зоне ввода реагента. Повышение дозы фосфата более 3 мг/дм3 нецелесообразно, так как это приводит к выпадению осадка.

В настоящее время для обработки воды охлаждающих систем широко используются органические производные фосфора, в частности оксиэтилидендифосфоновая кислота (ОЭДФ):

ОН OH

CH3 - C= P=O 2 .

OH

Этот реагент устойчив при температуре выше 100 °С, его требуемая доза составляет около 1 мг/дм3 в пересчете на P2O5, или около 10 мг/дм3 товарного продукта. Использование ОЭДФ, как показал отечественный опыт эксплуатации, позволяет полностью исключить образование минеральных отложений, сократить потребление воды на подпитку циркуляционных систем, отказаться от проведения химических очисток конденсаторов и уменьшить локальное повреждение трубок из медных сплавов.

При высокой карбонатной жесткости циркуляционной воды, превышающей предельное значение при стабилизационной обработке фосфатами (Жк. пр ≈ 6,5–0,1Жнк), целесообразно обрабатывать воду комбинированным способом: совместным подкислением и фосфатированием. Комбинированный способ предусматривает дозированием кислоты снизить карбонатную жесткость до значения, стабилизируемого фосфатами, что позволяет сократить расход кислоты и обеспечить безнакипный режим системы охлаждения.

11.4. Рекарбонизация охлаждающей воды

Как отмечалось, одна из основных задач при эксплуатации систем охлаждения воды состоит в предотвращении образования отложений накипи в теплообменных аппаратах. Образование накипи в этих системах обусловлено распадом бикарбоната кальция, т. е. карбонатной жесткости охлаждающей воды. Карбонат кальция представляет собой малорастворимое соединение, образующее на поверхности нагрева или охлаждения теплосилового оборудования накипь. Основная причина, вызывающая распад бикарбоната кальция, – недостаток растворенной в воде углекислоты. Это явление особенно характерно именно для систем охлаждающей воды, в которых недостаток растворенной в воде углекислоты обусловлен аэрацией воды в градирнях или брызгальных бассейнах вследствие удаления углекислоты из воды при контакте последней с атмосферным воздухом. Чтобы предотвратить распад бикарбоната кальция, необходимо поддерживать в воде минимальную концентрацию растворенной углекислоты, т. е. ее равновесную концентрацию.

На ТЭС недостаток диоксида углерода в охлаждающей воде может быть восполнен обработкой воды дымовыми газами, содержащими CO2. Необходимый расход дымовых газов может быть определен по формуле

где – необходимое увеличение концентрацииCO2 в охлаждающей (циркуляционной) воде перед конденсатором, мг/дм3;

Qц – расход охлаждающей воды, м3/ч;

β – степень использования углекислоты;

–концентрация углекислоты в дымовых газах, мг/дм3.

При использовании для рекарбонизации дымовых газов, содержащих SO2, необходимо уменьшить расчетную карбонатную жесткость, так как 31 г SO2 снижает карбонатную жесткость 1 т воды на 1 ммоль. Концентрацию SO2 г/дм3 в дымовых газах определяют по формуле:

где – объем дымовых газов, нм3;

–парциальное давление.

Значение определяют по формуле:

где α – коэффициент избытка воздуха;

Cp, Hp, – концентрация углерода, водорода, летучей серы в топливе соответственно.

Для рекарбонизации охлаждающей воды используют схему, включающую скруббер – аппарат, в котором вода насыщается углекислотой (рис. 11.4).

Рис.11.4. Схема рекарбонизации охлаждающей воды со скруббером:

1 – дымосос; 2 – золоуловитель; 3 – скруб-

бер; 4 – конденсатор; 5 – циркуляционный

насос; 6 – насос; 7 – градирня

Рис.11.5. Принципиальная схема скруббера:

1 – отвод дымовых газов; 2 – подвод охлаждающей воды; 3 – насадки; 4 – отвод рекарбонизованной воды; 5 – подвод дымовых газов

Часть охлаждающей воды после градирни подается в скруббер, в - нижнюю часть которого направляется поток дымовых газов от напорного патрубка дымососа. Обработанная дымовыми газами вода отводится из скруббера в канал подачи охлаждающей воды на конденсатор, а дымовые газы подаются во всасывающий патрубок дымососа.

Скруббер (рис. 11.5) представляет coбой металлический цилиндрический сосуд, внутри которого расположен слой насадки деревянных реек или керамических колец. Вода для обработки подается в верхнюю часть скруббера, равномерно распределяется по сечению корпуса и тонкой пленкой и струями стекает вниз по поверхности насадки. Дымовые газы движутся снизу вверх навстречу потоку воды. Процесс обработки воды в скруббере аналогичен процессу, происходящему в декарбонизаторе, и также подчиняется законам Генри – Дальтона.

Схема, изображенная на рис. 11.4, не требует дополнительного оборудования для подачи дымовых газов, однако использование ее осложнено из-за необходимости применения скруббера и дополнительной прокачки воды. В схеме с применением барботажного устройства (рис. 11.6) приведенные недостатки отсутствуют.

Рис.11.6. Схема рекарбонизации охлаждающей воды с барботажным устройством:

1 – дымосос; 2 – золоуловитель; 3 – высоконапорный вентилятор; 4 – конденсатор; 5 – циркуляционный насос; 6 – барботажное устройство; 7 – градирня

В этом случае дымовые газы подаются высоконапорным вентилятором в охлаждающую воду через барботажное устройство, расположенное в канале подачи воды на конденсатор. Недостатком этой схемы является дополнительный расход электроэнергии на вентилятор. Однако эффективность её выше предыдущей, так как она характеризуется высоким коэффициентом использования содержащейся в дымовых газах углекислоты – до 40–60 %.

Наиболее распространена схема рекарбонизации с применением водоструйного эжектора и барботажного устройства (рис. 11.7), в которой часть охлаждающей воды подается насосом на эжектор.

Дымовые газы подаются от напорного патрубка дымососа в смесительную камеру эжектора.

Наличие в схеме эжектора обеспечивает хорошее перемешивание дымовых газов с охлаждающей водой. После эжектора водогазовая смесь поступает через барботажное устройство в канал подачи воды на конденсатор.

Барботажное устройство обеспечивает дополнительную обработку охлаждающей воды дымовыми газами.

Рис. 11.7. Схема рекарбонизации охлаждающей воды с эжектором:

1 – дымосос; 2 – золоуловитель; 3 – водоструйный эжектор; 4 – конденсатор; 5 – циркуляционный насос; 6 – насос подачи воды на эжектор; 7 – градирня; 8 – барботажное устройство

Контрольные вопросы

  1. Перечислите составляющие, входящие в материальный баланс охлаждающей системы с градирней.

  2. Какие факторы влияют на предельно допустимую карбонатную жесткость охлаждающей воды?

  3. Какие эффекты стабилизации охлаждающей воды наблюдаются при ее подкислении?

  4. Охарактеризуйте стабилизирующее действие различных фосфорсодержащих веществ на охлаждающую воду.