
- •Водоподготовка и водно-химические режимы в теплоэнергетике
- •Предисловие
- •Часть I. Водоподготовка Глава первая Основные характеристики природной воды
- •1.1. Поступление примесей в воду
- •1.2. Классификация, характеристика вод и их примесей
- •1.3. Характеристика ионизированных примесей
- •1.4. Кремнесодержащие соединения и органические примеси
- •1.5. Закономерности изменения количественного состава примесей по районам и сезонам для поверхностных и подземных вод
- •1.6. Технологические, качественные показатели воды
- •1.7. Биологические показатели качества воды
- •Глава вторая Вода в теплоэнергетике
- •2.1. Применение воды в качестве теплоносителя
- •2.2. Принципиальные схемы обращения воды в тракте
- •2.3. Источники загрязнения
- •Характеристика загрязнений трактов тэс и аэс
- •2.4. Влияние примесей воды на надежность работы теплоэнергетического оборудования
- •2.5. Выбор водоисточника и производительности водоподготовительных установок
- •Глава третья
- •Глава четвертая Предварительная очистка воды и физико-химические процессы
- •4.1. Очистка воды методом коагуляции
- •4.2. Осаждение методами известкования и содоизвесткования
- •Глава пятая Фильтрование воды на механических фильтрах
- •Фильтрующие материалы и основные характеристики структуры фильтрованных слоев
- •Глава шестая Обессоливание воды
- •6.1. Физико-химические основы ионного обмена
- •6.2. Ионообменные материалы и их характеристики
- •6.3. Технология ионного обмена
- •6.4. Малосточные схемы ионитных водоподготовок
- •6.5. Автоматизация водоподготовительных установок
- •6.6. Перспективные технологии водоочистки
- •6.6.1. Противоточная технология ионирования
- •Назначение и область применения
- •Основные принципиальные схемы впу
- •Глава седьмая Термический метод очистки воды
- •7.1. Метод дистилляции
- •7.2. Предотвращение накипеобразования в испарительных установках физическими методами
- •7.3. Предотвращение накипеобразования в испарительных установках химическими, конструктивными и технологическими методами
- •Глава восьмая Очистка высокоминерализованных вод
- •8.1. Обратный осмос
- •8.2. Электродиализ
- •Глава девятая Водоподготовка в тепловых сетях с непосредственным водозабором
- •9.1. Основные положения
- •Нормы органолептических показателей воды
- •Нормы бактериологических показателей воды
- •Показатели пдк (нормы) химического состава воды
- •9.2. Подготовка добавочной воды методом н-катионирования с голодной регенерацией
- •9.3. Снижение карбонатной жесткости (щелочности) добавочной воды методом подкисления
- •9.4. Декарбонизация воды методом известкования
- •9.6. Магнитная противонакипная обработка добавочной воды
- •9.7. Подготовка воды для закрытых тепловых сетей
- •9.8. Подготовка воды для местных систем горячего водоснабжения
- •9.9. Подготовка воды для отопительных систем теплоснабжения
- •9.10. Технология обработки воды комплексонами в системах теплоснабжения
- •Глава десятая Очистка воды от растворенных газов
- •10.1. Общие положения
- •10.2. Удаление свободной углекислоты
- •Высота слоя в метрах насадки из колец Рашига определяется из уравнения:
- •10.3. Удаление кислорода физико-химическими методами
- •10.4. Деаэрация в деаэраторах атмосферного и пониженного давления
- •10.5. Химические методы удаления газов из воды
- •Глава одиннадцатая Стабилизационная обработка воды
- •11.1. Общие положения
- •11.2. Стабилизация воды подкислением
- •11.3. Фосфатирование охлаждающей воды
- •11.4. Рекарбонизация охлаждающей воды
- •Глава двенадцатая
- •Применение окислителей для борьбы
- •С биологическим обрастанием теплообменников
- •И обеззараживания воды
- •Глава тринадцатая Расчет механических и ионообменных фильтров
- •13.1. Расчет механических фильтров
- •13.2. Расчет ионитных фильтров
- •Глава четырнадцатая Примеры расчета водоподготовительных установок
- •14.1. Общие положения
- •14.2. Расчет установки химического обессоливания с параллельным включением фильтров
- •14.3. Расчет декарбонизатора с насадкой из колец Рашига
- •14.4. Расчет фильтров смешанного действия (фсд)
- •14.5. Расчет обессоливающей установки с блочным включением фильтров (расчет «цепочек»)
- •Особые условия и рекомендации
- •Расчет н-катионитных фильтров 1-й ступени ()
- •Расчет анионитных фильтров 1-й ступени (а1)
- •Расчет н-катионитных фильтров 2-й ступени ()
- •Расчет анионитных фильтров 2-й ступени (а2)
- •14.6. Расчет электродиализной установки
- •Глава пятнадцатая краткие технологии очистки конденсатов
- •15.1. Электромагнитный фильтр (эмф)
- •15.2. Особенности осветления турбинных и производственных конденсатов
- •Глава шестнадцатая Краткие технологии очистки сточных вод теплоэнергетики
- •16.1. Основные понятия о сточных водах тэс и котельных
- •16.2. Воды химводоочисток
- •16.3. Отработавшие растворы от промывок и консервации теплосилового оборудования
- •16.4. Теплые воды
- •16.5.Воды гидрозолоудаления
- •16.6. Обмывочные воды
- •16.7. Нефтезагрязненные воды
- •Часть II. Водно-химический режим
- •Глава вторая Химический контроль – основа водно-химического режима
- •Глава третья коррозия металла паросилового оборудования и методы борьбы с ней
- •3.1. Основные положения
- •3.2. Коррозия стали в перегретом паре
- •3.3. Коррозия тракта питательной воды и конденсатопроводов
- •3.4. Коррозия элементов парогенераторов
- •3.4.1. Коррозия парообразующих труб и барабанов парогенераторов во время их эксплуатации
- •3.4.2. Коррозия пароперегревателей
- •3.4.3. Стояночная коррозия парогенераторов
- •3.5. Коррозия паровых турбин
- •3.6. Коррозия конденсаторов турбин
- •3.7. Коррозия оборудования подпиточного и сетевого трактов
- •3.7.1. Коррозия трубопроводов и водогрейных котлов
- •3.7.2. Коррозия трубок теплообменных аппаратов
- •3.7.3. Оценка коррозионного состояния действующих систем горячего водоснабжения и причины коррозии
- •3.8. Консервация теплоэнергетического оборудования и теплосетей
- •3.8.1. Общее положение
- •3.8.2. Способы консервации барабанных котлов
- •3.8.3. Способы консервации прямоточных котлов
- •3.8.4. Способы консервации водогрейных котлов
- •3.8.5. Способы консервации турбоустановок
- •3.8.6. Консервация тепловых сетей
- •3.8.7. Краткие характеристики применяемых химических реагентов для консервации и меры предосторожности при работе с ними Водный раствор гидразингидрата n2н4·н2о
- •Водный раствор аммиака nh4(oh)
- •Трилон б
- •Тринатрийфосфат Na3po4·12н2о
- •Едкий натр NaOh
- •Силикат натрия (жидкое стекло натриевое)
- •Гидроксид кальция (известковый раствор) Са(он)2
- •Контактный ингибитор
- •Летучие ингибиторы
- •Глава четвертая отложения в энергетическом оборудовании и способы устранения
- •4.1. Отложения в парогенераторах и теплообменниках
- •4.2. Состав, структура и физические свойства отложений
- •4.3. Образование отложений на внутренних поверхностях нагрева парогенераторов с многократной циркуляцией и теплообменников
- •4.3.1. Условия образования твердой фазы из солевых растворов
- •4.3.2. Условия образования щелочно-земельных накипей
- •4.3.3. Условия образования ферро - и алюмосиликатных накипей
- •4.3.4. Условия образования железоокисных и железофосфатных накипей
- •4.3.5. Условия образования медных накипей
- •4.3.6. Условия образования отложений легкорастворимых соединений
- •4.4. Образование отложений на внутренних поверхностях прямоточных парогенераторов
- •4.5. Образование отложений на охлаждаемых поверхностях конденсаторов и по такту охлаждающей воды
- •4.6. Отложения по паровому тракту
- •4.6.1. Поведение примесей пара в пароперегревателе
- •4.6.2. Поведение примесей пара в проточной части паровых турбин
- •4.7. Образование отложений в водогрейном оборудовании
- •4.7.1. Основные сведения об отложениях
- •4.7.2. Организация химического контроля и оценка интенсивности накипеобразования в водогрейном оборудовании
- •4.8. Химические очистки оборудования тэс и котельных
- •4.8.1. Назначение химических очисток и выбор реагентов
- •4.8.2. Эксплуатационные химические очистки паровых турбин
- •4.8.3. Эксплуатационные химические очистки конденсаторов и сетевых подогревателей
- •4.8.4. Эксплуатационные химические очистки водогрейных котлов Общие положения
- •Технологические режимы очистки
- •4.8.5. Важнейшие реагенты для удаления отложений из водогрейных и паровых котлов низкого и среднего давлений
- •Глава пятая водно-химический режим (вхр) в энергетике
- •5.1. Водно-химические режимы барабанных котлов
- •5.1.1. Физико-химическая характеристика внутрикотловых процессов
- •5.1.2. Методы коррекционной обработки котловой и питательной воды
- •5.1.2.1. Фосфатная обработка котловой воды
- •5.1.2.2. Амминирование и гидразинная обработка питательной воды
- •5.1.3. Загрязнения пара и способы их удаления
- •5.1.3.1. Основные положения
- •5.1.3.2. Продувка барабанных котлов тэс и котельных
- •5.1.3.3. Ступенчатое испарение и промывка пара
- •5.1.4. Влияние водно-химического режима на состав и структуру отложений
- •5.2. Водно-химические режимы блоков скд
- •5.3. Водно-химический режим паровых турбин
- •5.3.1. Поведение примесей в проточной части турбин
- •5.3.2. Водно-химический режим паровых турбин высоких и сверхвысоких давлений
- •5.3.3. Водно-химический режим турбин насыщенного пара
- •5.4. Водный режим конденсаторов турбин
- •5.5. Водно-химический режим тепловых сетей
- •5.5.1. Основные положения и задачи
- •5.5.2. Источники загрязнения воды тепловых сетей окислами железа
- •5.5.3. Повышение надежности водно-химического режима теплосетей
- •5.5.4. Особенности водно-химического режима при эксплуатации водогрейных котлов, сжигающих мазутное топливо
- •5.6. Проверка эффективности проводимых на тэс, котельных водно-химических режимов
- •Часть III Случаи аварийных ситуаций в теплоэнергетике из-за нарушений водно-химического режима
- •Оборудование водоподготовительных установок (впу) останавливает котельную и заводы
- •Карбонат кальция задает загадки…
- •Магнитная обработка воды перестала предотвращать карбонатно-кальциевое накипеобразование. Почему?
- •Как предупредить отложения и коррозию в небольших водогрейных котлах
- •Какие соединения железа осаждаются в водогрейных котлах?
- •В трубках псв образуются отложения из силиката магния
- •Как взрываются деаэраторы?
- •Как спасти трубопроводы умягченной воды от коррозии?
- •Соотношение концентраций ионов в исходной воде определяет агрессивность котловой воды
- •Почему «горели» трубы только заднего экрана?
- •Как удалять из экранных труб органо-железистые отложения?
- •Химические «перекосы» в котловой воде
- •Эффективна ли периодическая продувка котлов в борьбе с железоокисным преобразованием?
- •Свищи в трубах котла появились до начала его эксплуатации!
- •Почему прогрессировала стояночная коррозия в самых «молодых» котлах?
- •Почему разрушались трубы в поверхностном пароохладителе?
- •Чем опасен котлам конденсат?
- •Основные причины аварийности тепловых сетей
- •Проблемы котельных птицепрома Омского региона
- •Почему не работали цтп в Омске
- •Причина высокой аварийности систем теплоснабжения в Советском районе г. Омска
- •Почему высока коррозионная аварийность на новых трубопроводах теплосети?
- •Сюрпризы природы? Белое море наступает на Архангельск
- •Река Омь угрожает аварийным остановом теплоэнергетического и нефтехимического комплексов г. Омска?
- •– Увеличена дозировка коагулянта на предочистку;
- •Выписка из «Правил технической эксплуатации электрических станций и сетей», утв. 19.06.2003
- •Требования к приборам ахк (Автоматика химического контроля)
- •Требования к средствам лабораторного контроля
- •Сравнение технических характеристик приборов различных фирм производителей
- •Содержание
- •Глава 10. Очистка воды от растворенных газов 112
- •Глава 4. Отложения в энергетическом оборудовании
- •Глава 5. Водно-химические режимы (вхр) в энергетике 256
- •Часть III. Случаи аварийных ситуаций в теплоэнергетике по вине водно-химического режима
5.1.3.2. Продувка барабанных котлов тэс и котельных
Продувка, т. е удаление из цикла части воды с наибольшими концентрациями примесей, осуществляется только для барабанных котлов ТЭС и ТЭЦ.
Для котлов ТЭС и ТЭЦ разомкнутая, непрерывно производимая продувка является важным средством поддержания нормального водного режима. Разделение пароводяной смеси в барабанах приводит к незначительному уносу примесей с насыщенным паром и концентрированию их в циркулирующей кипящей воде. Это может вызвать превышение допустимых концентраций примесей и к образованию значительных твердых отложений на теплообменных поверхностях. Поэтому необходимо организовать постоянное выведение примесей из этих контуров.
Для уменьшения энергетических потерь выведение примесей целесообразно производить из водяного объема котла. При этом резко уменьшается расход воды на продувку, так как концентрация любой примеси в котловой воде всегда больше, чем в питательной. Смешение параллельных потоков в барабанах подсказывает и наиболее благоприятное место для организации такой продувки воды – водяной объем барабана (рис. 4.1).
Рис. 5.1. Схема баланса расходов и примесей для котлов ТЭС и ТЭЦ в отсутствие ступенчатого испарения и промывки пара
Для оценки водного режима котла важны концентрации, которые устанавливаются в его водяном объеме. Из рис. 5.1 следует, что питательная вода с малыми концентрациями примесей поступает в водяной объем, где смешивается с циркулирующей водой с максимальными концентрациями (s >> sпв).
Концентрации примесей в водяном объеме sв тем ближе к концентрации в продувочной воде sпрод, чем больше кратность циркуляции Кц в системе. Обычно Кц =5…10, причем Кц тем меньше, чем выше давление в системе. Для систем с принудительной циркуляцией Кц меньше, чем для естественной циркуляции.
Насыщенный пар получается из воды с концентрацией примесей sв, которая меньше sпрод (из-за непрерывного поступления питательной воды с наименьшей концентрацией, sпв). Как показывает расчет по уравнению
|
(5.23) |
результаты которого представлены на рис. 5.2, с достаточной для практики точностью можно считать sв ≈ sпрод, и все расчеты вести относительно sпрод. В связи с этим расчеты водного режима существенно упрощаются, так как из баланса примесей в парообразующей системе определяется именно значение sпрод (см. рис. 5.1).
Рис. 5.2. Зависимость концентрации котловой воды от кратности циркуляции при р = 1 %, т.е. sпрод/sпв = 100
При расчетах водного режима необходимо иметь в виду два важных обстоятельства. Во-первых, излагаемые далее расчетные уравнения действительны только для примесей, не претерпевающих термических преобразований в котле и в предшествующем тракте. Поэтому такие расчеты точны для хлоридов, кремниевой кислоты и катиона натрия. В отношении жесткости они условны в связи с термическим разложением бикарбонатов и даже карбонатов. В связи с этим кратности концентраций sпрод/sпв, наблюдаемые в эксплуатации по хлоридам и по жесткости, никогда не совпадают. Во-вторых, приводимые ниже балансовые соотношения составлены для условий как отсутствия образования твердых отложений в парообразующей системе (например, труднорастворимых естественных примесей и продуктов коррозии), так и отсутствия дополнительного поступления примесей из парообразующей системы (например, за счет ее коррозии).
Для оценки водного режима важно знать не только концентрации примесей, но и время их пребывания в водяном объеме, т.е. время воздействия на них высоких температур.
Значение непрерывной продувки для ТЭС и ТЭЦ устанавливают для каждой системы на основе проведения теплохимических испытаний. Продувка представляет собой определенную энергетическую потерю в связи с дросселированием ее до давления в деаэраторе. Поэтому максимальное ее значение ограничивается. По ПТЭ, она должна быть не менее 0,5 % и не более 1 % при химическом или термическом обессоливании. При восполнении потерь химически очищенной водой продувка может быть увеличена, но не более чем до 3 %. Для условий ТЭЦ с большой безвозвратной отдачей пара на производство, а также при высокой минерализации исходной воды продувка может быть допущена до 5 %. Теплота продувочной воды используется в регенеративной системе, например для подогрева питательной воды испарителей, или иногда в системе водоподготовки для подогрева исходной воды и т. п.
Непрерывная продувка для котлов ТЭС и ТЭЦ автоматизируется. Применяется двухимпульсная система – от уровня воды в барабане и от соотношения расходов пара и питательной воды. Применявшаяся ранее трехимпульсная система (еще и по общему солесодержанию продувочной воды) была целесообразна только в условиях высоких солесодержаний, которые следовало ограничивать, чтобы не вызвать вспенивания котловой воды. В современных условиях солесодержания продувочной воды относительно невелики и трехимпульсную систему, более сложную и дорогую, не применяют.
Вывод непрерывной продувки в отсутствие ступенчатого испарения выполняется из верхних слоев водяного объема барабана с повышенным содержанием поверхностно-активных веществ обычно сборной трубой с отводами по длине барабана. Расположение ее по сечению барабана выполняют, во-первых, в области наивысших концентраций примесей и тем самым в стороне от подачи питательной воды и, во-вторых, на достаточном расстоянии от вводов тех или иных корректирующих реагентов.
На линии непрерывной продувки предусматривают отборник пробы с холодильником для контроля содержаний примесей (см. рис. 5.1). Расход котловой воды по пробоотборной линии составляет довольно большую долю от обычного расхода продувочной воды. Это означает, что даже в отсутствие поступления котловой воды в расширитель продувка котла происходит. Поэтому значение минимально необходимой продувки, расход которой замеряют перед расширителем, равно 0,2–0,3 %. Полное же значение р, входящее в расчетные соотношения, больше.
Наряду с непрерывной продувкой предусматривают периодическую продувку, которая выполняется из всех нижних точек контура (рис. 5.3.). Режим такой продувки регламентируется специальной инструкцией на каждой станции. Основное ее назначение - вывод шлама, обычно оседающего в нижних точках. Периодическую продувку проводят кратковременно (3–5 мин), поочередно (по одному) из каждого нижнего коллектора. Одновременная продувка из двух, а тем более из большего количества коллекторов не допускается, так как она может привести к опорожнению барабана котла.
Рис. 5.3. Схема периодической продувки котлов ТЭС и ТЭЦ:
1 – нижние коллекторы; 2 – холодильник отбора пробы воды периодической продувки
Периодическая продувка в системе электростанции не используется и целиком сбрасывается. На сбросах периодической продувки отборы и холодильники к ним обычно не предусматриваются. Однако установка таких пробоотборных точек целесообразна, так как позволяет характеризовать шламовый режим котла и находить оптимальный режим периодических продувок.