Скачиваний:
2102
Добавлен:
12.06.2014
Размер:
9.53 Mб
Скачать

2.3. Источники загрязнения

Существует несколько источников загрязнений теплоносителя в пароводяных трактах ТЭС и АЭС: примеси добавочной воды, вводимой в цикл для покрытия внутренних и внешних потерь пара и конденсата; присосы в конденсат пара охлаждающей воды в конденсаторах или сетевой воды в теплообменниках; примеси загрязненного конденсата; возвращаемого от внешних потребителей пара на ТЭЦ; примеси искусственно вводимые в пароводяной тракт для коррекции водного режима (фосфаты, гидразин, аммиак, другие разнообразные добавки); продукты коррозии конструкционных материалов, переходящие в теплоноситель. На АЭС примеси, кроме того, могут поступать в тракт в виде продуктов деления ядерного топлива через негерметичные участки оболочек тепловыделяющих элементов и образовываться в активной зоне реакторов за счет процессов воды, а также протекания радиационных превращений и радиационно-химических реакций. В зависимости от типа основного теплоэнергетического оборудования и условий работы вклад и влияние каждого из перечисленных источников (табл. 2.1) в суммарное загрязнение водного теплоносителя ТЭС и АЭС могут значительно варьироваться.

Присос охлаждающей воды в конденсаторах турбин обусловлен более высоким давлением сводной стороны конденсатора по сравнению с паровой, находящейся под глубоким вакуумом. Необходимо иметь в виду, присосы воды наблюдаются практически во всех конденсационных установках (исключая воздушно-конденсационные, так называемые «сухие» градирни) и составляют обычно 0,005–0,003 % количества конденсирующегося пара, повышаясь до 0,01–0,02 % при наличии коррозионных свищей или микротрещин в конденсаторных трубках и примерно 0,2 % при разрыве одной трубки.

Таблица 2.1

Характеристика загрязнений трактов тэс и аэс

Источники загрязнений

Характеристика загрязнений

Добавочная вода

В зависимости от схемы очистки может содержать в различных концентрациях соли натрия и аммония, кремниевую кислоту, соединения железа, органические вещества, растворенные газы.

Присосы охлаждающей воды

Все примеси природных вод в количестве, соответствующем удельному значению присоса.

Коррозия конструкционных материалов

Оксиды и ионы железа, меди, алюминия, хрома и других элементов.

Возвратный конденсат внешних потребителей пара на ТЭЦ

Оксиды железа, нефтепродукты, ионы кальция и магния, специфические загрязнения, определяемые типом пароиспользующего предприятия.

Неплотности тепловыделяющих элементов АЭС и радиационно-химические реакции в теплоносителе

Радионуклиды различных типов, аммиак, пероксид водорода.

В качестве конструкционных материалов ТЭС на органическом топливе широко применяются стали перлитного и аустинитного классов, сплавы на основе меди; в том числе латуни, а также алюминиевые сплавы. Для контуров АЭС наиболее характерно использование нержавеющих аустинитных сталей, высоколегированных хромом и никелем. В активных зонах реакторов применяются обычно циркониевые сплавы. Продукты коррозии конструкционных материалов переходят в теплоноситель большей частью в виде коллоидных и грубодисперсных форм.

В воде реакторных контуров обычно присутствуют радионуклиды хрома, марганца, железа, кобальта, йода, цезия и другие радионуклиды, определяющие удельную активность в пределах 106–108 Бк/дм3.

Повышение температуры и давления в контурах ТЭС и АЭС значительно изменяет способность воды растворять содержащиеся в ней примеси, это связано с перестройкой структуры, проявляющейся, в частности, в уменьшении диэлектрической проницаемости воды, что отражает ослабление полярности ее молекул. При высокой температуре растворяющей способностью обладает не только жидкая вода, но и водяной пар, сближение растворяющих свойств которых обусловлено уменьшением разности их плотностей (соотношение 1050:1 при 100 °С и 1:1 при критической температуре 374,15 °С на линии насыщения). Способность пара растворять примеси вызывает осложнение работы пароперегревателей котлов и паровых турбин вследствие образования отложений и интенсификации коррозионно-эрозионных процессов и необходимость поддерживать чистоту питательной воды энергетических блоков как за счет приготовления подпиточной воды высокого качества, так и очистки питательной воды от растворенных и взвешенных примесей.