
- •Водоподготовка и водно-химические режимы в теплоэнергетике
- •Предисловие
- •Часть I. Водоподготовка Глава первая Основные характеристики природной воды
- •1.1. Поступление примесей в воду
- •1.2. Классификация, характеристика вод и их примесей
- •1.3. Характеристика ионизированных примесей
- •1.4. Кремнесодержащие соединения и органические примеси
- •1.5. Закономерности изменения количественного состава примесей по районам и сезонам для поверхностных и подземных вод
- •1.6. Технологические, качественные показатели воды
- •1.7. Биологические показатели качества воды
- •Глава вторая Вода в теплоэнергетике
- •2.1. Применение воды в качестве теплоносителя
- •2.2. Принципиальные схемы обращения воды в тракте
- •2.3. Источники загрязнения
- •Характеристика загрязнений трактов тэс и аэс
- •2.4. Влияние примесей воды на надежность работы теплоэнергетического оборудования
- •2.5. Выбор водоисточника и производительности водоподготовительных установок
- •Глава третья
- •Глава четвертая Предварительная очистка воды и физико-химические процессы
- •4.1. Очистка воды методом коагуляции
- •4.2. Осаждение методами известкования и содоизвесткования
- •Глава пятая Фильтрование воды на механических фильтрах
- •Фильтрующие материалы и основные характеристики структуры фильтрованных слоев
- •Глава шестая Обессоливание воды
- •6.1. Физико-химические основы ионного обмена
- •6.2. Ионообменные материалы и их характеристики
- •6.3. Технология ионного обмена
- •6.4. Малосточные схемы ионитных водоподготовок
- •6.5. Автоматизация водоподготовительных установок
- •6.6. Перспективные технологии водоочистки
- •6.6.1. Противоточная технология ионирования
- •Назначение и область применения
- •Основные принципиальные схемы впу
- •Глава седьмая Термический метод очистки воды
- •7.1. Метод дистилляции
- •7.2. Предотвращение накипеобразования в испарительных установках физическими методами
- •7.3. Предотвращение накипеобразования в испарительных установках химическими, конструктивными и технологическими методами
- •Глава восьмая Очистка высокоминерализованных вод
- •8.1. Обратный осмос
- •8.2. Электродиализ
- •Глава девятая Водоподготовка в тепловых сетях с непосредственным водозабором
- •9.1. Основные положения
- •Нормы органолептических показателей воды
- •Нормы бактериологических показателей воды
- •Показатели пдк (нормы) химического состава воды
- •9.2. Подготовка добавочной воды методом н-катионирования с голодной регенерацией
- •9.3. Снижение карбонатной жесткости (щелочности) добавочной воды методом подкисления
- •9.4. Декарбонизация воды методом известкования
- •9.6. Магнитная противонакипная обработка добавочной воды
- •9.7. Подготовка воды для закрытых тепловых сетей
- •9.8. Подготовка воды для местных систем горячего водоснабжения
- •9.9. Подготовка воды для отопительных систем теплоснабжения
- •9.10. Технология обработки воды комплексонами в системах теплоснабжения
- •Глава десятая Очистка воды от растворенных газов
- •10.1. Общие положения
- •10.2. Удаление свободной углекислоты
- •Высота слоя в метрах насадки из колец Рашига определяется из уравнения:
- •10.3. Удаление кислорода физико-химическими методами
- •10.4. Деаэрация в деаэраторах атмосферного и пониженного давления
- •10.5. Химические методы удаления газов из воды
- •Глава одиннадцатая Стабилизационная обработка воды
- •11.1. Общие положения
- •11.2. Стабилизация воды подкислением
- •11.3. Фосфатирование охлаждающей воды
- •11.4. Рекарбонизация охлаждающей воды
- •Глава двенадцатая
- •Применение окислителей для борьбы
- •С биологическим обрастанием теплообменников
- •И обеззараживания воды
- •Глава тринадцатая Расчет механических и ионообменных фильтров
- •13.1. Расчет механических фильтров
- •13.2. Расчет ионитных фильтров
- •Глава четырнадцатая Примеры расчета водоподготовительных установок
- •14.1. Общие положения
- •14.2. Расчет установки химического обессоливания с параллельным включением фильтров
- •14.3. Расчет декарбонизатора с насадкой из колец Рашига
- •14.4. Расчет фильтров смешанного действия (фсд)
- •14.5. Расчет обессоливающей установки с блочным включением фильтров (расчет «цепочек»)
- •Особые условия и рекомендации
- •Расчет н-катионитных фильтров 1-й ступени ()
- •Расчет анионитных фильтров 1-й ступени (а1)
- •Расчет н-катионитных фильтров 2-й ступени ()
- •Расчет анионитных фильтров 2-й ступени (а2)
- •14.6. Расчет электродиализной установки
- •Глава пятнадцатая краткие технологии очистки конденсатов
- •15.1. Электромагнитный фильтр (эмф)
- •15.2. Особенности осветления турбинных и производственных конденсатов
- •Глава шестнадцатая Краткие технологии очистки сточных вод теплоэнергетики
- •16.1. Основные понятия о сточных водах тэс и котельных
- •16.2. Воды химводоочисток
- •16.3. Отработавшие растворы от промывок и консервации теплосилового оборудования
- •16.4. Теплые воды
- •16.5.Воды гидрозолоудаления
- •16.6. Обмывочные воды
- •16.7. Нефтезагрязненные воды
- •Часть II. Водно-химический режим
- •Глава вторая Химический контроль – основа водно-химического режима
- •Глава третья коррозия металла паросилового оборудования и методы борьбы с ней
- •3.1. Основные положения
- •3.2. Коррозия стали в перегретом паре
- •3.3. Коррозия тракта питательной воды и конденсатопроводов
- •3.4. Коррозия элементов парогенераторов
- •3.4.1. Коррозия парообразующих труб и барабанов парогенераторов во время их эксплуатации
- •3.4.2. Коррозия пароперегревателей
- •3.4.3. Стояночная коррозия парогенераторов
- •3.5. Коррозия паровых турбин
- •3.6. Коррозия конденсаторов турбин
- •3.7. Коррозия оборудования подпиточного и сетевого трактов
- •3.7.1. Коррозия трубопроводов и водогрейных котлов
- •3.7.2. Коррозия трубок теплообменных аппаратов
- •3.7.3. Оценка коррозионного состояния действующих систем горячего водоснабжения и причины коррозии
- •3.8. Консервация теплоэнергетического оборудования и теплосетей
- •3.8.1. Общее положение
- •3.8.2. Способы консервации барабанных котлов
- •3.8.3. Способы консервации прямоточных котлов
- •3.8.4. Способы консервации водогрейных котлов
- •3.8.5. Способы консервации турбоустановок
- •3.8.6. Консервация тепловых сетей
- •3.8.7. Краткие характеристики применяемых химических реагентов для консервации и меры предосторожности при работе с ними Водный раствор гидразингидрата n2н4·н2о
- •Водный раствор аммиака nh4(oh)
- •Трилон б
- •Тринатрийфосфат Na3po4·12н2о
- •Едкий натр NaOh
- •Силикат натрия (жидкое стекло натриевое)
- •Гидроксид кальция (известковый раствор) Са(он)2
- •Контактный ингибитор
- •Летучие ингибиторы
- •Глава четвертая отложения в энергетическом оборудовании и способы устранения
- •4.1. Отложения в парогенераторах и теплообменниках
- •4.2. Состав, структура и физические свойства отложений
- •4.3. Образование отложений на внутренних поверхностях нагрева парогенераторов с многократной циркуляцией и теплообменников
- •4.3.1. Условия образования твердой фазы из солевых растворов
- •4.3.2. Условия образования щелочно-земельных накипей
- •4.3.3. Условия образования ферро - и алюмосиликатных накипей
- •4.3.4. Условия образования железоокисных и железофосфатных накипей
- •4.3.5. Условия образования медных накипей
- •4.3.6. Условия образования отложений легкорастворимых соединений
- •4.4. Образование отложений на внутренних поверхностях прямоточных парогенераторов
- •4.5. Образование отложений на охлаждаемых поверхностях конденсаторов и по такту охлаждающей воды
- •4.6. Отложения по паровому тракту
- •4.6.1. Поведение примесей пара в пароперегревателе
- •4.6.2. Поведение примесей пара в проточной части паровых турбин
- •4.7. Образование отложений в водогрейном оборудовании
- •4.7.1. Основные сведения об отложениях
- •4.7.2. Организация химического контроля и оценка интенсивности накипеобразования в водогрейном оборудовании
- •4.8. Химические очистки оборудования тэс и котельных
- •4.8.1. Назначение химических очисток и выбор реагентов
- •4.8.2. Эксплуатационные химические очистки паровых турбин
- •4.8.3. Эксплуатационные химические очистки конденсаторов и сетевых подогревателей
- •4.8.4. Эксплуатационные химические очистки водогрейных котлов Общие положения
- •Технологические режимы очистки
- •4.8.5. Важнейшие реагенты для удаления отложений из водогрейных и паровых котлов низкого и среднего давлений
- •Глава пятая водно-химический режим (вхр) в энергетике
- •5.1. Водно-химические режимы барабанных котлов
- •5.1.1. Физико-химическая характеристика внутрикотловых процессов
- •5.1.2. Методы коррекционной обработки котловой и питательной воды
- •5.1.2.1. Фосфатная обработка котловой воды
- •5.1.2.2. Амминирование и гидразинная обработка питательной воды
- •5.1.3. Загрязнения пара и способы их удаления
- •5.1.3.1. Основные положения
- •5.1.3.2. Продувка барабанных котлов тэс и котельных
- •5.1.3.3. Ступенчатое испарение и промывка пара
- •5.1.4. Влияние водно-химического режима на состав и структуру отложений
- •5.2. Водно-химические режимы блоков скд
- •5.3. Водно-химический режим паровых турбин
- •5.3.1. Поведение примесей в проточной части турбин
- •5.3.2. Водно-химический режим паровых турбин высоких и сверхвысоких давлений
- •5.3.3. Водно-химический режим турбин насыщенного пара
- •5.4. Водный режим конденсаторов турбин
- •5.5. Водно-химический режим тепловых сетей
- •5.5.1. Основные положения и задачи
- •5.5.2. Источники загрязнения воды тепловых сетей окислами железа
- •5.5.3. Повышение надежности водно-химического режима теплосетей
- •5.5.4. Особенности водно-химического режима при эксплуатации водогрейных котлов, сжигающих мазутное топливо
- •5.6. Проверка эффективности проводимых на тэс, котельных водно-химических режимов
- •Часть III Случаи аварийных ситуаций в теплоэнергетике из-за нарушений водно-химического режима
- •Оборудование водоподготовительных установок (впу) останавливает котельную и заводы
- •Карбонат кальция задает загадки…
- •Магнитная обработка воды перестала предотвращать карбонатно-кальциевое накипеобразование. Почему?
- •Как предупредить отложения и коррозию в небольших водогрейных котлах
- •Какие соединения железа осаждаются в водогрейных котлах?
- •В трубках псв образуются отложения из силиката магния
- •Как взрываются деаэраторы?
- •Как спасти трубопроводы умягченной воды от коррозии?
- •Соотношение концентраций ионов в исходной воде определяет агрессивность котловой воды
- •Почему «горели» трубы только заднего экрана?
- •Как удалять из экранных труб органо-железистые отложения?
- •Химические «перекосы» в котловой воде
- •Эффективна ли периодическая продувка котлов в борьбе с железоокисным преобразованием?
- •Свищи в трубах котла появились до начала его эксплуатации!
- •Почему прогрессировала стояночная коррозия в самых «молодых» котлах?
- •Почему разрушались трубы в поверхностном пароохладителе?
- •Чем опасен котлам конденсат?
- •Основные причины аварийности тепловых сетей
- •Проблемы котельных птицепрома Омского региона
- •Почему не работали цтп в Омске
- •Причина высокой аварийности систем теплоснабжения в Советском районе г. Омска
- •Почему высока коррозионная аварийность на новых трубопроводах теплосети?
- •Сюрпризы природы? Белое море наступает на Архангельск
- •Река Омь угрожает аварийным остановом теплоэнергетического и нефтехимического комплексов г. Омска?
- •– Увеличена дозировка коагулянта на предочистку;
- •Выписка из «Правил технической эксплуатации электрических станций и сетей», утв. 19.06.2003
- •Требования к приборам ахк (Автоматика химического контроля)
- •Требования к средствам лабораторного контроля
- •Сравнение технических характеристик приборов различных фирм производителей
- •Содержание
- •Глава 10. Очистка воды от растворенных газов 112
- •Глава 4. Отложения в энергетическом оборудовании
- •Глава 5. Водно-химические режимы (вхр) в энергетике 256
- •Часть III. Случаи аварийных ситуаций в теплоэнергетике по вине водно-химического режима
3.5. Коррозия паровых турбин
Металл проточной части турбин может в процессе работы подвергаться коррозии в зоне конденсации пара, особенно при наличии в нем угольной кислоты, растрескиванию вследствие наличия в паре коррозионных агентов и стояночной коррозии при нахождении турбин в резерве или на ремонте. Особенно сильно подвергается стояночной коррозии проточная часть турбины при наличии в ней солевых отложений. Образующийся во время простоя турбины солевой раствор ускоряет развитие коррозии. Отсюда вытекает необходимость тщательной очистки от отложений лопаточного аппарата турбины перед длительным простоем ее.
Коррозия в период простоя обычно имеет сравнительно равномерный характер, при неблагоприятных условиях она проявляется в виде многочисленных язвин, равномерно распределенных по поверхности металла. Местом протекания ее являются те ступени, где конденсируется влага, агрессивно воздействующая на стальные детали проточной части турбины.
Источником появления влаги является прежде всего конденсация пара, заполняющего турбину после ее остановки. Конденсат частично остается на лопатках и диафрагмах, частично стекает и скапливается в корпусе турбины, так как он не отводится через дренажи. Количество влаги внутри турбины может увеличиваться вследствие просачивания пара из паропроводов отборов и противодавления. Внутренние части турбины всегда холоднее поступающего в турбину воздуха. Относительная влажность воздуха машинного зала весьма высока, поэтому достаточно незначительного охлаждения воздуха, чтобы наступила точка росы, и произошло выделение влаги на металлических деталях.
Для устранения стояночной коррозии паровых турбин необходимо исключить возможность попадания пара в турбины во время нахождения их в резерве как со стороны паропровода перегретого пара, так и со стороны магистрали отборов, дренажных линий и т. д. Для поддержания поверхности лопаток, дисков и ротора в сухом виде применяется периодическое продувание внутренней полости резервной турбины потоком горячего воздуха (t = 80 ÷ 100 °C), подаваемого небольшим вспомогательным вентилятором через нагреватель (электрический или паровой).
3.6. Коррозия конденсаторов турбин
В условиях эксплуатации паросиловых установок нередко наблюдаются случаи коррозионных повреждений латунных конденсаторных труб как с внутренней стороны, омываемой охлаждающей водой, так и с наружной стороны. Интенсивно корродируют внутренние поверхности конденсаторных труб, охлаждаемые сильно минерализованными, солено-озерными водами, содержащими большое количество хлоридов, либо оборотными циркуляционными водами с повышенной минерализацией, и загрязненными взвешенными частицами.
Характерной особенностью латуни как конструкционного материала является склонность ее к коррозии при совместном действии повышенных механических напряжений и среды, обладающей даже умеренными агрессивными свойствами. Коррозионные повреждения проявляются в конденсаторах с латунными трубами в форме общего обесцинкования, пробочного обесцинкования, коррозионного растрескивания, ударной коррозии и коррозионной усталости. На протекание отмеченных форм коррозии латуни решающее воздействие оказывает состав сплава, технология изготовления конденсаторных труб и характер контактируемой среды. Вследствие обесцинкования разрушение поверхности латунных труб может носить сплошной слоевой характер или принадлежать к так называемому пробочному типу, являющемуся наиболее опасным. Пробочное обесцинкование характеризуется углубляющимися в металл язвинами, заполненными рыхлой медью. Наличие сквозных свищей вызывает необходимость замены трубы во избежание присоса охлаждающей сырой воды в конденсат.
Проведенные исследования, а также длительные наблюдения за состоянием поверхности конденсаторных труб в действующих конденсаторах показали, что дополнительное введение в латунь небольших количеств мышьяка заметно снижает склонность латуней к обесцинкованию. Сложные по составу латуни, дополнительно легированные оловом или алюминием, также обладают повышенной коррозионной стойкостью благодаря способности этих сплавов быстро восстанавливать защитные пленки при их механическом разрушении. Вследствие применения металлов, занимающих различные места в потенциальном ряду и электрически соединенных, в конденсаторе возникают макроэлементы. Наличие переменного температурного поля создает возможность развития коррозионно-опасных ЭДС термоэлектрического происхождения. Блуждающие токи, возникающие при заземлении вблизи постоянного тока, также могут явиться причиной интенсивной коррозии конденсаторов.
Коррозионные повреждения конденсаторных труб со стороны конденсирующегося пара чаще всего бывают связаны с присутствием в нем аммиака. Последний, будучи хорошим комплексообразователем по отношению к ионам меди и цинка, создает благоприятные условия для обесцинкования латуни. Кроме того, аммиак обусловливает коррозионное растрескивание латунных конденсаторных труб при наличии в сплаве внутренних или внешних растягивающих напряжений, которые постепенно расширяют трещины по мере развития коррозионного процесса. Установлено, что при отсутствии кислорода и других окислителей растворы аммиака не могут агрессивно воздействовать на медь и ее сплавы; поэтому можно не опасаться аммиачной коррозии латунных труб при концентрации аммиака в конденсате до 10 мг/дм3 и отсутствии кислорода. При наличии же даже небольшого количества кислорода аммиак разрушает латунь и другие медные сплавы при концентрации 2–3 мг/дм3.
Коррозии со стороны пара в первую очередь могут подвергаться латунные трубы охладителей выпара, эжекторов и камер отсоса воздуха конденсаторов турбин, где создаются условия, благоприятствующие попаданию воздуха и возникновению местных повышенных концентраций аммиака в частично сконденсированном паре.
Для предотвращения коррозии конденсаторных труб с водяной стороны необходимо в каждом конкретном случае при выборе металла или сплавов, пригодных для изготовления этих труб, учитывать их коррозионную стойкость при заданном составе охлаждающей воды. Особо серьезное внимание выбору коррозионностойких материалов для изготовления конденсаторных труб должно быть уделено в тех случаях, когда конденсаторы охлаждаются проточной высокоминерализованной водой, а также в условиях восполнения потерь охлаждающей воды в оборотных системах водоснабжения ТЭС, пресными водами, обладающими повышенной минерализованностью, либо загрязненными коррозионноагрессивными промышленными и бытовыми стоками.