
- •Водоподготовка и водно-химические режимы в теплоэнергетике
- •Предисловие
- •Часть I. Водоподготовка Глава первая Основные характеристики природной воды
- •1.1. Поступление примесей в воду
- •1.2. Классификация, характеристика вод и их примесей
- •1.3. Характеристика ионизированных примесей
- •1.4. Кремнесодержащие соединения и органические примеси
- •1.5. Закономерности изменения количественного состава примесей по районам и сезонам для поверхностных и подземных вод
- •1.6. Технологические, качественные показатели воды
- •1.7. Биологические показатели качества воды
- •Глава вторая Вода в теплоэнергетике
- •2.1. Применение воды в качестве теплоносителя
- •2.2. Принципиальные схемы обращения воды в тракте
- •2.3. Источники загрязнения
- •Характеристика загрязнений трактов тэс и аэс
- •2.4. Влияние примесей воды на надежность работы теплоэнергетического оборудования
- •2.5. Выбор водоисточника и производительности водоподготовительных установок
- •Глава третья
- •Глава четвертая Предварительная очистка воды и физико-химические процессы
- •4.1. Очистка воды методом коагуляции
- •4.2. Осаждение методами известкования и содоизвесткования
- •Глава пятая Фильтрование воды на механических фильтрах
- •Фильтрующие материалы и основные характеристики структуры фильтрованных слоев
- •Глава шестая Обессоливание воды
- •6.1. Физико-химические основы ионного обмена
- •6.2. Ионообменные материалы и их характеристики
- •6.3. Технология ионного обмена
- •6.4. Малосточные схемы ионитных водоподготовок
- •6.5. Автоматизация водоподготовительных установок
- •6.6. Перспективные технологии водоочистки
- •6.6.1. Противоточная технология ионирования
- •Назначение и область применения
- •Основные принципиальные схемы впу
- •Глава седьмая Термический метод очистки воды
- •7.1. Метод дистилляции
- •7.2. Предотвращение накипеобразования в испарительных установках физическими методами
- •7.3. Предотвращение накипеобразования в испарительных установках химическими, конструктивными и технологическими методами
- •Глава восьмая Очистка высокоминерализованных вод
- •8.1. Обратный осмос
- •8.2. Электродиализ
- •Глава девятая Водоподготовка в тепловых сетях с непосредственным водозабором
- •9.1. Основные положения
- •Нормы органолептических показателей воды
- •Нормы бактериологических показателей воды
- •Показатели пдк (нормы) химического состава воды
- •9.2. Подготовка добавочной воды методом н-катионирования с голодной регенерацией
- •9.3. Снижение карбонатной жесткости (щелочности) добавочной воды методом подкисления
- •9.4. Декарбонизация воды методом известкования
- •9.6. Магнитная противонакипная обработка добавочной воды
- •9.7. Подготовка воды для закрытых тепловых сетей
- •9.8. Подготовка воды для местных систем горячего водоснабжения
- •9.9. Подготовка воды для отопительных систем теплоснабжения
- •9.10. Технология обработки воды комплексонами в системах теплоснабжения
- •Глава десятая Очистка воды от растворенных газов
- •10.1. Общие положения
- •10.2. Удаление свободной углекислоты
- •Высота слоя в метрах насадки из колец Рашига определяется из уравнения:
- •10.3. Удаление кислорода физико-химическими методами
- •10.4. Деаэрация в деаэраторах атмосферного и пониженного давления
- •10.5. Химические методы удаления газов из воды
- •Глава одиннадцатая Стабилизационная обработка воды
- •11.1. Общие положения
- •11.2. Стабилизация воды подкислением
- •11.3. Фосфатирование охлаждающей воды
- •11.4. Рекарбонизация охлаждающей воды
- •Глава двенадцатая
- •Применение окислителей для борьбы
- •С биологическим обрастанием теплообменников
- •И обеззараживания воды
- •Глава тринадцатая Расчет механических и ионообменных фильтров
- •13.1. Расчет механических фильтров
- •13.2. Расчет ионитных фильтров
- •Глава четырнадцатая Примеры расчета водоподготовительных установок
- •14.1. Общие положения
- •14.2. Расчет установки химического обессоливания с параллельным включением фильтров
- •14.3. Расчет декарбонизатора с насадкой из колец Рашига
- •14.4. Расчет фильтров смешанного действия (фсд)
- •14.5. Расчет обессоливающей установки с блочным включением фильтров (расчет «цепочек»)
- •Особые условия и рекомендации
- •Расчет н-катионитных фильтров 1-й ступени ()
- •Расчет анионитных фильтров 1-й ступени (а1)
- •Расчет н-катионитных фильтров 2-й ступени ()
- •Расчет анионитных фильтров 2-й ступени (а2)
- •14.6. Расчет электродиализной установки
- •Глава пятнадцатая краткие технологии очистки конденсатов
- •15.1. Электромагнитный фильтр (эмф)
- •15.2. Особенности осветления турбинных и производственных конденсатов
- •Глава шестнадцатая Краткие технологии очистки сточных вод теплоэнергетики
- •16.1. Основные понятия о сточных водах тэс и котельных
- •16.2. Воды химводоочисток
- •16.3. Отработавшие растворы от промывок и консервации теплосилового оборудования
- •16.4. Теплые воды
- •16.5.Воды гидрозолоудаления
- •16.6. Обмывочные воды
- •16.7. Нефтезагрязненные воды
- •Часть II. Водно-химический режим
- •Глава вторая Химический контроль – основа водно-химического режима
- •Глава третья коррозия металла паросилового оборудования и методы борьбы с ней
- •3.1. Основные положения
- •3.2. Коррозия стали в перегретом паре
- •3.3. Коррозия тракта питательной воды и конденсатопроводов
- •3.4. Коррозия элементов парогенераторов
- •3.4.1. Коррозия парообразующих труб и барабанов парогенераторов во время их эксплуатации
- •3.4.2. Коррозия пароперегревателей
- •3.4.3. Стояночная коррозия парогенераторов
- •3.5. Коррозия паровых турбин
- •3.6. Коррозия конденсаторов турбин
- •3.7. Коррозия оборудования подпиточного и сетевого трактов
- •3.7.1. Коррозия трубопроводов и водогрейных котлов
- •3.7.2. Коррозия трубок теплообменных аппаратов
- •3.7.3. Оценка коррозионного состояния действующих систем горячего водоснабжения и причины коррозии
- •3.8. Консервация теплоэнергетического оборудования и теплосетей
- •3.8.1. Общее положение
- •3.8.2. Способы консервации барабанных котлов
- •3.8.3. Способы консервации прямоточных котлов
- •3.8.4. Способы консервации водогрейных котлов
- •3.8.5. Способы консервации турбоустановок
- •3.8.6. Консервация тепловых сетей
- •3.8.7. Краткие характеристики применяемых химических реагентов для консервации и меры предосторожности при работе с ними Водный раствор гидразингидрата n2н4·н2о
- •Водный раствор аммиака nh4(oh)
- •Трилон б
- •Тринатрийфосфат Na3po4·12н2о
- •Едкий натр NaOh
- •Силикат натрия (жидкое стекло натриевое)
- •Гидроксид кальция (известковый раствор) Са(он)2
- •Контактный ингибитор
- •Летучие ингибиторы
- •Глава четвертая отложения в энергетическом оборудовании и способы устранения
- •4.1. Отложения в парогенераторах и теплообменниках
- •4.2. Состав, структура и физические свойства отложений
- •4.3. Образование отложений на внутренних поверхностях нагрева парогенераторов с многократной циркуляцией и теплообменников
- •4.3.1. Условия образования твердой фазы из солевых растворов
- •4.3.2. Условия образования щелочно-земельных накипей
- •4.3.3. Условия образования ферро - и алюмосиликатных накипей
- •4.3.4. Условия образования железоокисных и железофосфатных накипей
- •4.3.5. Условия образования медных накипей
- •4.3.6. Условия образования отложений легкорастворимых соединений
- •4.4. Образование отложений на внутренних поверхностях прямоточных парогенераторов
- •4.5. Образование отложений на охлаждаемых поверхностях конденсаторов и по такту охлаждающей воды
- •4.6. Отложения по паровому тракту
- •4.6.1. Поведение примесей пара в пароперегревателе
- •4.6.2. Поведение примесей пара в проточной части паровых турбин
- •4.7. Образование отложений в водогрейном оборудовании
- •4.7.1. Основные сведения об отложениях
- •4.7.2. Организация химического контроля и оценка интенсивности накипеобразования в водогрейном оборудовании
- •4.8. Химические очистки оборудования тэс и котельных
- •4.8.1. Назначение химических очисток и выбор реагентов
- •4.8.2. Эксплуатационные химические очистки паровых турбин
- •4.8.3. Эксплуатационные химические очистки конденсаторов и сетевых подогревателей
- •4.8.4. Эксплуатационные химические очистки водогрейных котлов Общие положения
- •Технологические режимы очистки
- •4.8.5. Важнейшие реагенты для удаления отложений из водогрейных и паровых котлов низкого и среднего давлений
- •Глава пятая водно-химический режим (вхр) в энергетике
- •5.1. Водно-химические режимы барабанных котлов
- •5.1.1. Физико-химическая характеристика внутрикотловых процессов
- •5.1.2. Методы коррекционной обработки котловой и питательной воды
- •5.1.2.1. Фосфатная обработка котловой воды
- •5.1.2.2. Амминирование и гидразинная обработка питательной воды
- •5.1.3. Загрязнения пара и способы их удаления
- •5.1.3.1. Основные положения
- •5.1.3.2. Продувка барабанных котлов тэс и котельных
- •5.1.3.3. Ступенчатое испарение и промывка пара
- •5.1.4. Влияние водно-химического режима на состав и структуру отложений
- •5.2. Водно-химические режимы блоков скд
- •5.3. Водно-химический режим паровых турбин
- •5.3.1. Поведение примесей в проточной части турбин
- •5.3.2. Водно-химический режим паровых турбин высоких и сверхвысоких давлений
- •5.3.3. Водно-химический режим турбин насыщенного пара
- •5.4. Водный режим конденсаторов турбин
- •5.5. Водно-химический режим тепловых сетей
- •5.5.1. Основные положения и задачи
- •5.5.2. Источники загрязнения воды тепловых сетей окислами железа
- •5.5.3. Повышение надежности водно-химического режима теплосетей
- •5.5.4. Особенности водно-химического режима при эксплуатации водогрейных котлов, сжигающих мазутное топливо
- •5.6. Проверка эффективности проводимых на тэс, котельных водно-химических режимов
- •Часть III Случаи аварийных ситуаций в теплоэнергетике из-за нарушений водно-химического режима
- •Оборудование водоподготовительных установок (впу) останавливает котельную и заводы
- •Карбонат кальция задает загадки…
- •Магнитная обработка воды перестала предотвращать карбонатно-кальциевое накипеобразование. Почему?
- •Как предупредить отложения и коррозию в небольших водогрейных котлах
- •Какие соединения железа осаждаются в водогрейных котлах?
- •В трубках псв образуются отложения из силиката магния
- •Как взрываются деаэраторы?
- •Как спасти трубопроводы умягченной воды от коррозии?
- •Соотношение концентраций ионов в исходной воде определяет агрессивность котловой воды
- •Почему «горели» трубы только заднего экрана?
- •Как удалять из экранных труб органо-железистые отложения?
- •Химические «перекосы» в котловой воде
- •Эффективна ли периодическая продувка котлов в борьбе с железоокисным преобразованием?
- •Свищи в трубах котла появились до начала его эксплуатации!
- •Почему прогрессировала стояночная коррозия в самых «молодых» котлах?
- •Почему разрушались трубы в поверхностном пароохладителе?
- •Чем опасен котлам конденсат?
- •Основные причины аварийности тепловых сетей
- •Проблемы котельных птицепрома Омского региона
- •Почему не работали цтп в Омске
- •Причина высокой аварийности систем теплоснабжения в Советском районе г. Омска
- •Почему высока коррозионная аварийность на новых трубопроводах теплосети?
- •Сюрпризы природы? Белое море наступает на Архангельск
- •Река Омь угрожает аварийным остановом теплоэнергетического и нефтехимического комплексов г. Омска?
- •– Увеличена дозировка коагулянта на предочистку;
- •Выписка из «Правил технической эксплуатации электрических станций и сетей», утв. 19.06.2003
- •Требования к приборам ахк (Автоматика химического контроля)
- •Требования к средствам лабораторного контроля
- •Сравнение технических характеристик приборов различных фирм производителей
- •Содержание
- •Глава 10. Очистка воды от растворенных газов 112
- •Глава 4. Отложения в энергетическом оборудовании
- •Глава 5. Водно-химические режимы (вхр) в энергетике 256
- •Часть III. Случаи аварийных ситуаций в теплоэнергетике по вине водно-химического режима
Глава третья коррозия металла паросилового оборудования и методы борьбы с ней
3.1. Основные положения
Металлы и сплавы, применяемые для изготовления теплоэнергетического оборудования, обладают способностью вступать во взаимодействие с соприкасающейся с ними средой (вода, пар, газы), содержащей те или иные коррозионноагрессивные примеси (кислород, угольную и другие кислоты, щелочи и др.). В результате воздействия агрессивной среды происходит коррозионное разрушение металла или сплава вследствие электрохимических и химических процессов, которое обычно начинается с поверхности и более или менее быстро продвигается вглубь.
При появлении на поверхности металла макро- или микрогальванических элементов на тех участках, где они соприкасаются с растворами электролитов и влажным паром, протекает электрохимическая коррозия, которая наиболее часто встречается в практике эксплуатации тепловых электростанций. Этому виду коррозии подвержены водоподготовительное оборудование; все элементы тракта питательной воды и трубопроводы, возвращающие конденсат с производства; парогенераторы; атомные реакторы; конденсаторы паровых турбин и тепловые сети.
При эксплуатации указанного паросилового оборудования всегда существуют условия для протекания электрохимической коррозии, в том числе контакт различных металлов, неоднородность поверхности, нарушение кристаллической решетки металла, неравномерность температурного поля, различие концентрации примесей в слоях раствора, контактирующих с металлом, и ряд других факторов.
Xимическая коррозия происходит в результате непосредственного окисления котельного металла высокоперегретым паром.
В практике эксплуатации энергоустановок наблюдаются также комбинированные случаи разрушения металла, т. е. совместное протекание химической и электрохимической коррозии. В результате коррозионного воздействия агрессивных агентов нa металл, непосредственно на его поверхности и в тесном контакте с ним, образуется защитная микропористая окисная пленка, которая представляет собой продукт коррозии металла и тормозит дальнейшее развитие коррозионного процесса. Чем полнее и равномернее окисная пленка покрывает поверхность металла, чем меньше в ней трещин, тем более высокими лимитными свойствами она обладает.
В практических условиях защитные свойства пленки определяются не только тем сопротивлением, которое она оказывает коррозионно-агрессивному агенту, но и ее сохранностью. Наибольшую целостность имеют защитные пленки, обладающие хорошим сцеплением с металлом, достаточно прочные и пластичные, с минимальной разницей в коэффициентах линейного расширения по сравнению с металлом.
Повреждения защитной пленки могут быть вызваны механическими, химическими или термическими процессами. Коробление барабанов парогенераторов, резкие колебания температуры стенки парообразующих труб вследствие попеременного омывания их водой и паром, воздействие на поверхность котельного металла концентрированных растворов NaOH при глубоком упаривании котловой воды и т. п. – все эти процессы могут разрушать защитную окисную пленку. Если защитная пленка по тем или иным причинам растрескивается и отслаивается от металла, то процесс коррозии развивается дальше с повышенной скоростью, которая постепенно замедляется, пока вновь не произойдет очередное разрушение защитной пленки. Следствием коррозии элементов парогенератора и тракта питательной воды является отложение окислов металлов как в парообразующих и пароперегревательных трубах, так и в проточной части паровой турбины.
Статистические данные свидетельствуют о том, что больше половины аварий и значительное число эксплуатационных неполадок, происходящих на тепловых электростанциях из-за дефектов водного режима, вызваны коррозионными повреждениями основного и вспомогательного оборудования.
Основными источниками появления окислов железа и меди в теплоносителе являются: а) коррозия элементов водо-парового тракта, в том числе водоподготовительного оборудования, трубных пучков регенеративных подогревателей и конденсаторов турбин, конденсатопроводов, баков для хранения обессоленной воды и конденсатов и др.; б) коррозия водяных экономайзеров; в) стояночная коррозия находящихся в резерве парогенераторов и вспомогательного оборудования при отсутствии их эффективной консервации; г) разрушение слоя окалины и окисных отложений на внутренних поверхностях барабанов, парообразующих и пароперегревательных труб; д) неэффективная шламовая продувка парогенераторов. На электростанциях сверхвысокого и сверхкритического давления наблюдается коррозионное растрескивание элементов оборудования, выполненных из аустенитных сталей. В практике известны случаи, когда этот опасный вид коррозии приводит за очень короткий срок к аварийному выходу из строя агрегатов. Коррозия элементов проточной части паровой турбины приводит к увеличению радиального зазора между лопатками и корпусом, что влечет за собой ухудшение КПД турбины.
Последствия коррозии паровых турбин, находящихся в резерве, весьма опасны. Поэтому защита их от коррозии во время простоев является таким же обязательным мероприятием, как и защита в процессе эксплуатации.
Необходимо учитывать, что коррозионные повреждения (свищи, трещины) конденсаторных труб как с паровой стороны (под действием NН3 и О2), так и с водяной (под действием агрессивной охлаждающей воды) могут привести к опасным загрязнениям конденсата из-за присосов охлаждающей воды.
Сужение поперечного сечения теплофикационных сетей вследствие образующихся при коррозии бугров или наростов окислов железа приводит к увеличению гидравлического сопротивления и снижению пропускной способности сетей. При работе тепловых сетей немалые неприятности причиняет обогащение воды продуктами коррозии, что может вызвать скопление их в застойных местах или на участках с малыми скоростями движения. Забивание коррозионными отложениями местных систем отопления целиком выводит из работы отдельные приборы и стояки.
Актуальность борьбы с коррозией в теплофикационных системах централизованного горячего водоснабжения связана со значительным ростом протяженности коммуникаций. Предотвращение возникновения коррозии оборудования паротурбинных установок и теплофикационных систем, а также поддержание длительной сохранности защитной окисной пленки на поверхности металла являются сложной задачей, для решения которой необходимо применять современные средства подготовки добавочной воды, обработки котловой воды, а также умело подбирать коррозионно-стойкие металлы и защитные покрытия.