
- •Водоподготовка и водно-химические режимы в теплоэнергетике
- •Предисловие
- •Часть I. Водоподготовка Глава первая Основные характеристики природной воды
- •1.1. Поступление примесей в воду
- •1.2. Классификация, характеристика вод и их примесей
- •1.3. Характеристика ионизированных примесей
- •1.4. Кремнесодержащие соединения и органические примеси
- •1.5. Закономерности изменения количественного состава примесей по районам и сезонам для поверхностных и подземных вод
- •1.6. Технологические, качественные показатели воды
- •1.7. Биологические показатели качества воды
- •Глава вторая Вода в теплоэнергетике
- •2.1. Применение воды в качестве теплоносителя
- •2.2. Принципиальные схемы обращения воды в тракте
- •2.3. Источники загрязнения
- •Характеристика загрязнений трактов тэс и аэс
- •2.4. Влияние примесей воды на надежность работы теплоэнергетического оборудования
- •2.5. Выбор водоисточника и производительности водоподготовительных установок
- •Глава третья
- •Глава четвертая Предварительная очистка воды и физико-химические процессы
- •4.1. Очистка воды методом коагуляции
- •4.2. Осаждение методами известкования и содоизвесткования
- •Глава пятая Фильтрование воды на механических фильтрах
- •Фильтрующие материалы и основные характеристики структуры фильтрованных слоев
- •Глава шестая Обессоливание воды
- •6.1. Физико-химические основы ионного обмена
- •6.2. Ионообменные материалы и их характеристики
- •6.3. Технология ионного обмена
- •6.4. Малосточные схемы ионитных водоподготовок
- •6.5. Автоматизация водоподготовительных установок
- •6.6. Перспективные технологии водоочистки
- •6.6.1. Противоточная технология ионирования
- •Назначение и область применения
- •Основные принципиальные схемы впу
- •Глава седьмая Термический метод очистки воды
- •7.1. Метод дистилляции
- •7.2. Предотвращение накипеобразования в испарительных установках физическими методами
- •7.3. Предотвращение накипеобразования в испарительных установках химическими, конструктивными и технологическими методами
- •Глава восьмая Очистка высокоминерализованных вод
- •8.1. Обратный осмос
- •8.2. Электродиализ
- •Глава девятая Водоподготовка в тепловых сетях с непосредственным водозабором
- •9.1. Основные положения
- •Нормы органолептических показателей воды
- •Нормы бактериологических показателей воды
- •Показатели пдк (нормы) химического состава воды
- •9.2. Подготовка добавочной воды методом н-катионирования с голодной регенерацией
- •9.3. Снижение карбонатной жесткости (щелочности) добавочной воды методом подкисления
- •9.4. Декарбонизация воды методом известкования
- •9.6. Магнитная противонакипная обработка добавочной воды
- •9.7. Подготовка воды для закрытых тепловых сетей
- •9.8. Подготовка воды для местных систем горячего водоснабжения
- •9.9. Подготовка воды для отопительных систем теплоснабжения
- •9.10. Технология обработки воды комплексонами в системах теплоснабжения
- •Глава десятая Очистка воды от растворенных газов
- •10.1. Общие положения
- •10.2. Удаление свободной углекислоты
- •Высота слоя в метрах насадки из колец Рашига определяется из уравнения:
- •10.3. Удаление кислорода физико-химическими методами
- •10.4. Деаэрация в деаэраторах атмосферного и пониженного давления
- •10.5. Химические методы удаления газов из воды
- •Глава одиннадцатая Стабилизационная обработка воды
- •11.1. Общие положения
- •11.2. Стабилизация воды подкислением
- •11.3. Фосфатирование охлаждающей воды
- •11.4. Рекарбонизация охлаждающей воды
- •Глава двенадцатая
- •Применение окислителей для борьбы
- •С биологическим обрастанием теплообменников
- •И обеззараживания воды
- •Глава тринадцатая Расчет механических и ионообменных фильтров
- •13.1. Расчет механических фильтров
- •13.2. Расчет ионитных фильтров
- •Глава четырнадцатая Примеры расчета водоподготовительных установок
- •14.1. Общие положения
- •14.2. Расчет установки химического обессоливания с параллельным включением фильтров
- •14.3. Расчет декарбонизатора с насадкой из колец Рашига
- •14.4. Расчет фильтров смешанного действия (фсд)
- •14.5. Расчет обессоливающей установки с блочным включением фильтров (расчет «цепочек»)
- •Особые условия и рекомендации
- •Расчет н-катионитных фильтров 1-й ступени ()
- •Расчет анионитных фильтров 1-й ступени (а1)
- •Расчет н-катионитных фильтров 2-й ступени ()
- •Расчет анионитных фильтров 2-й ступени (а2)
- •14.6. Расчет электродиализной установки
- •Глава пятнадцатая краткие технологии очистки конденсатов
- •15.1. Электромагнитный фильтр (эмф)
- •15.2. Особенности осветления турбинных и производственных конденсатов
- •Глава шестнадцатая Краткие технологии очистки сточных вод теплоэнергетики
- •16.1. Основные понятия о сточных водах тэс и котельных
- •16.2. Воды химводоочисток
- •16.3. Отработавшие растворы от промывок и консервации теплосилового оборудования
- •16.4. Теплые воды
- •16.5.Воды гидрозолоудаления
- •16.6. Обмывочные воды
- •16.7. Нефтезагрязненные воды
- •Часть II. Водно-химический режим
- •Глава вторая Химический контроль – основа водно-химического режима
- •Глава третья коррозия металла паросилового оборудования и методы борьбы с ней
- •3.1. Основные положения
- •3.2. Коррозия стали в перегретом паре
- •3.3. Коррозия тракта питательной воды и конденсатопроводов
- •3.4. Коррозия элементов парогенераторов
- •3.4.1. Коррозия парообразующих труб и барабанов парогенераторов во время их эксплуатации
- •3.4.2. Коррозия пароперегревателей
- •3.4.3. Стояночная коррозия парогенераторов
- •3.5. Коррозия паровых турбин
- •3.6. Коррозия конденсаторов турбин
- •3.7. Коррозия оборудования подпиточного и сетевого трактов
- •3.7.1. Коррозия трубопроводов и водогрейных котлов
- •3.7.2. Коррозия трубок теплообменных аппаратов
- •3.7.3. Оценка коррозионного состояния действующих систем горячего водоснабжения и причины коррозии
- •3.8. Консервация теплоэнергетического оборудования и теплосетей
- •3.8.1. Общее положение
- •3.8.2. Способы консервации барабанных котлов
- •3.8.3. Способы консервации прямоточных котлов
- •3.8.4. Способы консервации водогрейных котлов
- •3.8.5. Способы консервации турбоустановок
- •3.8.6. Консервация тепловых сетей
- •3.8.7. Краткие характеристики применяемых химических реагентов для консервации и меры предосторожности при работе с ними Водный раствор гидразингидрата n2н4·н2о
- •Водный раствор аммиака nh4(oh)
- •Трилон б
- •Тринатрийфосфат Na3po4·12н2о
- •Едкий натр NaOh
- •Силикат натрия (жидкое стекло натриевое)
- •Гидроксид кальция (известковый раствор) Са(он)2
- •Контактный ингибитор
- •Летучие ингибиторы
- •Глава четвертая отложения в энергетическом оборудовании и способы устранения
- •4.1. Отложения в парогенераторах и теплообменниках
- •4.2. Состав, структура и физические свойства отложений
- •4.3. Образование отложений на внутренних поверхностях нагрева парогенераторов с многократной циркуляцией и теплообменников
- •4.3.1. Условия образования твердой фазы из солевых растворов
- •4.3.2. Условия образования щелочно-земельных накипей
- •4.3.3. Условия образования ферро - и алюмосиликатных накипей
- •4.3.4. Условия образования железоокисных и железофосфатных накипей
- •4.3.5. Условия образования медных накипей
- •4.3.6. Условия образования отложений легкорастворимых соединений
- •4.4. Образование отложений на внутренних поверхностях прямоточных парогенераторов
- •4.5. Образование отложений на охлаждаемых поверхностях конденсаторов и по такту охлаждающей воды
- •4.6. Отложения по паровому тракту
- •4.6.1. Поведение примесей пара в пароперегревателе
- •4.6.2. Поведение примесей пара в проточной части паровых турбин
- •4.7. Образование отложений в водогрейном оборудовании
- •4.7.1. Основные сведения об отложениях
- •4.7.2. Организация химического контроля и оценка интенсивности накипеобразования в водогрейном оборудовании
- •4.8. Химические очистки оборудования тэс и котельных
- •4.8.1. Назначение химических очисток и выбор реагентов
- •4.8.2. Эксплуатационные химические очистки паровых турбин
- •4.8.3. Эксплуатационные химические очистки конденсаторов и сетевых подогревателей
- •4.8.4. Эксплуатационные химические очистки водогрейных котлов Общие положения
- •Технологические режимы очистки
- •4.8.5. Важнейшие реагенты для удаления отложений из водогрейных и паровых котлов низкого и среднего давлений
- •Глава пятая водно-химический режим (вхр) в энергетике
- •5.1. Водно-химические режимы барабанных котлов
- •5.1.1. Физико-химическая характеристика внутрикотловых процессов
- •5.1.2. Методы коррекционной обработки котловой и питательной воды
- •5.1.2.1. Фосфатная обработка котловой воды
- •5.1.2.2. Амминирование и гидразинная обработка питательной воды
- •5.1.3. Загрязнения пара и способы их удаления
- •5.1.3.1. Основные положения
- •5.1.3.2. Продувка барабанных котлов тэс и котельных
- •5.1.3.3. Ступенчатое испарение и промывка пара
- •5.1.4. Влияние водно-химического режима на состав и структуру отложений
- •5.2. Водно-химические режимы блоков скд
- •5.3. Водно-химический режим паровых турбин
- •5.3.1. Поведение примесей в проточной части турбин
- •5.3.2. Водно-химический режим паровых турбин высоких и сверхвысоких давлений
- •5.3.3. Водно-химический режим турбин насыщенного пара
- •5.4. Водный режим конденсаторов турбин
- •5.5. Водно-химический режим тепловых сетей
- •5.5.1. Основные положения и задачи
- •5.5.2. Источники загрязнения воды тепловых сетей окислами железа
- •5.5.3. Повышение надежности водно-химического режима теплосетей
- •5.5.4. Особенности водно-химического режима при эксплуатации водогрейных котлов, сжигающих мазутное топливо
- •5.6. Проверка эффективности проводимых на тэс, котельных водно-химических режимов
- •Часть III Случаи аварийных ситуаций в теплоэнергетике из-за нарушений водно-химического режима
- •Оборудование водоподготовительных установок (впу) останавливает котельную и заводы
- •Карбонат кальция задает загадки…
- •Магнитная обработка воды перестала предотвращать карбонатно-кальциевое накипеобразование. Почему?
- •Как предупредить отложения и коррозию в небольших водогрейных котлах
- •Какие соединения железа осаждаются в водогрейных котлах?
- •В трубках псв образуются отложения из силиката магния
- •Как взрываются деаэраторы?
- •Как спасти трубопроводы умягченной воды от коррозии?
- •Соотношение концентраций ионов в исходной воде определяет агрессивность котловой воды
- •Почему «горели» трубы только заднего экрана?
- •Как удалять из экранных труб органо-железистые отложения?
- •Химические «перекосы» в котловой воде
- •Эффективна ли периодическая продувка котлов в борьбе с железоокисным преобразованием?
- •Свищи в трубах котла появились до начала его эксплуатации!
- •Почему прогрессировала стояночная коррозия в самых «молодых» котлах?
- •Почему разрушались трубы в поверхностном пароохладителе?
- •Чем опасен котлам конденсат?
- •Основные причины аварийности тепловых сетей
- •Проблемы котельных птицепрома Омского региона
- •Почему не работали цтп в Омске
- •Причина высокой аварийности систем теплоснабжения в Советском районе г. Омска
- •Почему высока коррозионная аварийность на новых трубопроводах теплосети?
- •Сюрпризы природы? Белое море наступает на Архангельск
- •Река Омь угрожает аварийным остановом теплоэнергетического и нефтехимического комплексов г. Омска?
- •– Увеличена дозировка коагулянта на предочистку;
- •Выписка из «Правил технической эксплуатации электрических станций и сетей», утв. 19.06.2003
- •Требования к приборам ахк (Автоматика химического контроля)
- •Требования к средствам лабораторного контроля
- •Сравнение технических характеристик приборов различных фирм производителей
- •Содержание
- •Глава 10. Очистка воды от растворенных газов 112
- •Глава 4. Отложения в энергетическом оборудовании
- •Глава 5. Водно-химические режимы (вхр) в энергетике 256
- •Часть III. Случаи аварийных ситуаций в теплоэнергетике по вине водно-химического режима
Часть II. Водно-химический режим
теплоэнергетических объектов
Глава первая
Водно-химический режим (ВХР) теплосилового
оборудования тепловых сетей и основные задачи
Существуют следующие способы организации водного режима:
а) физико-химический – это коррекционная обработка питательной и котловой воды, т.е. дозирование в воду небольшого количества соответствующих реагентов, приводящих качество воды в соответствие с нормальными показателями; в результате удаляются из воды незначительные остаточные загрязнения. К коррекционным способам обработки воды относится фосфатирование, аминирование, сульфитирование, гидрозирование, нитрирование, трилонирование, силикатирование.
б) ко второму способу относится – продувка, ступенчатое испарение, промывка насыщенного пара или их совместное использование.
Водно-химические режимы подразделяются на гидразинно-аммиачный, гидразинный, кислородно-аммиачный, нейтрально-кислородный.
Одним из основных показателей надежности водного режима энергоблока прямоточного или барабанного котла является длительность межпромывочного периода как парогенератора, так и турбины.
С увеличением единичной мощности котлов и ростом параметров рабочей среды организация водно-химического режима приобретает особо важное значение в обеспечении надежной и экономичной работы.
“Химическая часть” тепловых электростанций, котельных объединяет комплекс средств, обеспечивающих надежную работу конструкционных материалов котлов, теплообменных аппаратов, тепловых сетей и паровых турбин, защищая их от коррозионного разрушения, образования и накопления отложений. Этот комплекс включает подготовку добавочной воды; очистку турбинного и производственных конденсатов; коррекционную обработку питательной и котловой воды; обработку охлаждающей воды и воды, поступающей в тепловые сети; нейтрализацию и более или менее полное обезвреживание сточных вод; химический контроль режимов очистки и коррекции воды.
Рациональный водно-химический режим состоит в обеспечении качественной добавки очищенной воды в пароводяной цикл. Материал первого раздела в основном был посвящен этим вопросам; в нем содержатся краткие сведения о процессах, технологических режимах, схемах и аппаратах установок подготовки добавочной воды и очистки турбинного и производственного конденсата.
Возможность длительной бесперебойной эксплуатации ТЭС и котельных в значительной степени определяется интенсивностью протекания физико-химических процессов накипеобразования на поверхности нагрева парогенераторов, уноса солей кремниевой кислоты и окислов металлов паром из испаряемой котловой воды и оборудования, отложений их в проточной части паровых турбин, а также коррозии металла энергетического оборудования и трубопроводов.
Интенсивность протекания всех этих процессов зависит от качества пара, питательной и котловой воды.
Опыт многолетней эксплуатации мощных энергоблоков в России и за рубежом убедительно свидетельствует о том, что необходимым условием длительной, надежной и экономичной эксплуатации ТЭС, котельных является рациональная организация водоподготовки, водного режима парогенераторов и в первую очередь строгое соблюдение экспериментально обоснованных эксплуатационных норм качества пара, конденсата, питательной и котловой воды.
При решении водной проблемы паротурбинных электростанций существенное значение имеет то, что переход к сверхвысокому и сверхкритическому давлению значительно видоизменял не только условия парообразования, но и свойства самого рабочего тела.
Одним из факторов обусловливающих столь важное значение водной проблемы современных ТЭС и котельных являются высокие удельные тепловые нагрузки стенок парообразующих труб парогенераторов. В целях обеспечения надежного температурного режима металла этих поверхностей и тем самым более продолжительной работы котлоагрегатов, необходимо жесткое ограничение допустимой величины отложений на поверхностях нагрева, омываемых водой, пароводяной смесью или паром. Образование отложений в пароводяном тракте ТЭЦ, котельной отрицательно влияет на работу как основного, так и вспомогательного оборудования. Несмотря на различия в химическом составе и структуре отложений все они характеризуются меньшими по сравнению с металлами коэффициентами теплопроводности [0,06–6 против 46–120 Вт/(мК)]. При загрязнении отдельных теплопередающих поверхностей отложениями снижаются коэффициенты теплопередачи, увеличивается шероховатость стенок, уменьшаются проходные сечения и, как следствие, увеличиваются потери на трение.
Все это при относительно невысоких температурах рабочей среды, например в регенеративных подогревателях, экономайзерах котла, конденсаторах турбин и т.д. сказывается лишь на экономических показателях работы оборудования. При высоких же температурах рабочей среды, т.е. в пароперегревателях экранных труб котлов, наряду с ухудшением экономичности оборудования, отложения снижают и надежность его работы.
В пароперегревателях при этом интенсифицируются процессы ползучести металла и окалинообразования, приводящие к утонению стенок и разрыву труб. В местах перегрева экранных труб происходит размягчение металла и его деформация под действием давления рабочей среды, в результате на трубках появляются выпуклости (отдулины), которые со временем растут, толщина стенки при этом уменьшается, и затем образуется разрыв металла (свищ).
При повреждении хотя бы одной трубки пароперегревателя или экранной трубы приходится внепланово останавливать котел. К тем же последствиям приводят коррозионные повреждения металла со стороны рабочей среды. На останов, расхолаживание, удаление поврежденного участка, замену его новым и повторный пуск котла требуется значительное время. Чем больше единичная мощность агрегата, тем значительнее экономический ущерб, наносимый его внеплановыми остановами. Чтобы предотвратить их, нужно создавать условия, препятствующие как образованию отложений, так и коррозии металла.
Поскольку речь идет о процессах, протекающих со стороны рабочей среды, создание таких условий требует воздействия на ее состав или, как принято говорить, соответствующей организации водно-химического режима котла.
Другим важным фактором является повышенная чувствительность турбин высокого давления к загрязнению проточной части. Даже небольшие отложения на лопатках турбины, еще не вызывающие снижения ее номинальной мощности, могут существенно снизить тепловую экономичность турбины и всего энергоблока. С повышением давления пара и переходом к прямоточным парогенераторам сверхкритического давления (СКД) опасность загрязнения питательной воды резко возрастает из-за увеличения интенсивности коррозионных процессов с ростом температуры.
Отложения, образующиеся в проточной части турбин, как правило, не вызывают аварийных остановов этих агрегатов, но оказывают существенное влияние на экономичность их работы. При накапливании отложений происходит снижение относительного внутреннего КПД турбины, возникает шероховатость поверхности лопаточного аппарата, уменьшаются проходные сечения для пара, и в результате падает мощность турбины, сокращается подача энергии потребителям. Уже при небольших количествах отложений в турбинах ощутимо уменьшается их КПД. Так, снижение КПД на 1–2 % у конденсационных турбин мощностью 100 МВт происходит при накапливании всего 1 кг отложений в их проточной части. У турбин мощностью 300 МВт при накапливании 1 кг отложений КПД снижается примерно на 0,5–1 % .
На первый взгляд уменьшение КПД паровых турбин на 1–2 % и снижение их мощности на 2–5 % представляются незначительными. Но в действительности при огромных масштабах производства электроэнергии тепловыми паротурбинными станциями нашей страны (так установленная мощность электростанций России по состоянию на 01.01.2001 г. – 215 млн. кВт, в том числе тепловых, работающих на органическом топливе – 149 млн. кВт) каждая доля процента оборачивается значительными перерасходами топлива из-за снижения КПД, понижением надежности энергоснабжения из-за снижения резервов электрической мощности и, возможно, в этой связи – недовыработкой продукции на промышленных предприятиях.
Источником образования отложений в турбинах являются примеси, содержащиеся в поступающем паре. Чем выше его качество, т.е. чем меньше в паре примесей, образующих твердые отложения на лопатках турбины, тем ближе ее КПД и мощность к расчетным значениям. Следовательно, для обеспечения экономической работы необходимо, чтобы по содержанию отдельных примесей перегретый пар отвечал определенным требованиям.
Это в свою очередь связано с выполнением ряда требований к качеству питательной воды котлов уже не из условий предотвращения отложений в самих котлах, а из условий получения чистого пара для предотвращения отложений в турбинах.
Присутствие ряда примесей в паре и воде, безразличных в отношении образования отложений в котлах и турбинах, таких, например, как растворенные газы нитратов и нитритов, является, тем не менее нежелательным, потому что они обусловливают или интенсифицируют процессы коррозии металлов, соприкасающихся с рабочей средой.
Предупреждение коррозионных разрушений оборудования, уменьшение степени загрязнения пара и воды продуктами коррозии, уменьшение в котлах и турбинах отложений, содержащих окислы металлов – эти задачи относятся к организации водно-химического режима всей станции в целом, поскольку практически все участки пароводяного тракта в той или иной мере подвержены коррозии.
Итак, общими задачами водоподготовки и рациональной организации водно-химического режима на ТЭС, котельной является:
- предотвращение образований на внутренних поверхностях парообразующих и пароперегревательных труб отложений кальциевых соединений и окислов железа, а в проточной части паровых турбин отложений соединений меди, железа, кремниевой кислоты и натрия;
- защита от коррозии конструкционных металлов основного и вспомогательного оборудования ТЭС, котельных и теплофикационных систем в условиях их контакта с водой и паром, а также при нахождении их в резерве.
Требования к водно-химическому режиму паротурбинных электростанций и котельных находят свое выражение в нормировании содержания различных примесей в воде и паре основного цикла ТЭС, в водах тепловой сети и системы охлаждения конденсаторов турбин. Для основного цикла устанавливаются нормы качества пара, поступающего в турбину, конденсата, добавочной и питательной воды котлов. Для теплофикационного цикла устанавливаются нормы добавочной и сетевой воды, для системы охлаждения – нормы охлаждающей воды.
Рассмотрение организаций водяного режима по отдельным участкам пароводяного тракта ТЭС позволяет учесть особенности поведения примесей на всех этих участках, а также выявить влияние и взаимозависимость водных режимов отдельных агрегатов и таким образом установить совокупность всех вопросов, характеризующих водный режим станции, котельных в целом.