
- •Водоподготовка и водно-химические режимы в теплоэнергетике
- •Предисловие
- •Часть I. Водоподготовка Глава первая Основные характеристики природной воды
- •1.1. Поступление примесей в воду
- •1.2. Классификация, характеристика вод и их примесей
- •1.3. Характеристика ионизированных примесей
- •1.4. Кремнесодержащие соединения и органические примеси
- •1.5. Закономерности изменения количественного состава примесей по районам и сезонам для поверхностных и подземных вод
- •1.6. Технологические, качественные показатели воды
- •1.7. Биологические показатели качества воды
- •Глава вторая Вода в теплоэнергетике
- •2.1. Применение воды в качестве теплоносителя
- •2.2. Принципиальные схемы обращения воды в тракте
- •2.3. Источники загрязнения
- •Характеристика загрязнений трактов тэс и аэс
- •2.4. Влияние примесей воды на надежность работы теплоэнергетического оборудования
- •2.5. Выбор водоисточника и производительности водоподготовительных установок
- •Глава третья
- •Глава четвертая Предварительная очистка воды и физико-химические процессы
- •4.1. Очистка воды методом коагуляции
- •4.2. Осаждение методами известкования и содоизвесткования
- •Глава пятая Фильтрование воды на механических фильтрах
- •Фильтрующие материалы и основные характеристики структуры фильтрованных слоев
- •Глава шестая Обессоливание воды
- •6.1. Физико-химические основы ионного обмена
- •6.2. Ионообменные материалы и их характеристики
- •6.3. Технология ионного обмена
- •6.4. Малосточные схемы ионитных водоподготовок
- •6.5. Автоматизация водоподготовительных установок
- •6.6. Перспективные технологии водоочистки
- •6.6.1. Противоточная технология ионирования
- •Назначение и область применения
- •Основные принципиальные схемы впу
- •Глава седьмая Термический метод очистки воды
- •7.1. Метод дистилляции
- •7.2. Предотвращение накипеобразования в испарительных установках физическими методами
- •7.3. Предотвращение накипеобразования в испарительных установках химическими, конструктивными и технологическими методами
- •Глава восьмая Очистка высокоминерализованных вод
- •8.1. Обратный осмос
- •8.2. Электродиализ
- •Глава девятая Водоподготовка в тепловых сетях с непосредственным водозабором
- •9.1. Основные положения
- •Нормы органолептических показателей воды
- •Нормы бактериологических показателей воды
- •Показатели пдк (нормы) химического состава воды
- •9.2. Подготовка добавочной воды методом н-катионирования с голодной регенерацией
- •9.3. Снижение карбонатной жесткости (щелочности) добавочной воды методом подкисления
- •9.4. Декарбонизация воды методом известкования
- •9.6. Магнитная противонакипная обработка добавочной воды
- •9.7. Подготовка воды для закрытых тепловых сетей
- •9.8. Подготовка воды для местных систем горячего водоснабжения
- •9.9. Подготовка воды для отопительных систем теплоснабжения
- •9.10. Технология обработки воды комплексонами в системах теплоснабжения
- •Глава десятая Очистка воды от растворенных газов
- •10.1. Общие положения
- •10.2. Удаление свободной углекислоты
- •Высота слоя в метрах насадки из колец Рашига определяется из уравнения:
- •10.3. Удаление кислорода физико-химическими методами
- •10.4. Деаэрация в деаэраторах атмосферного и пониженного давления
- •10.5. Химические методы удаления газов из воды
- •Глава одиннадцатая Стабилизационная обработка воды
- •11.1. Общие положения
- •11.2. Стабилизация воды подкислением
- •11.3. Фосфатирование охлаждающей воды
- •11.4. Рекарбонизация охлаждающей воды
- •Глава двенадцатая
- •Применение окислителей для борьбы
- •С биологическим обрастанием теплообменников
- •И обеззараживания воды
- •Глава тринадцатая Расчет механических и ионообменных фильтров
- •13.1. Расчет механических фильтров
- •13.2. Расчет ионитных фильтров
- •Глава четырнадцатая Примеры расчета водоподготовительных установок
- •14.1. Общие положения
- •14.2. Расчет установки химического обессоливания с параллельным включением фильтров
- •14.3. Расчет декарбонизатора с насадкой из колец Рашига
- •14.4. Расчет фильтров смешанного действия (фсд)
- •14.5. Расчет обессоливающей установки с блочным включением фильтров (расчет «цепочек»)
- •Особые условия и рекомендации
- •Расчет н-катионитных фильтров 1-й ступени ()
- •Расчет анионитных фильтров 1-й ступени (а1)
- •Расчет н-катионитных фильтров 2-й ступени ()
- •Расчет анионитных фильтров 2-й ступени (а2)
- •14.6. Расчет электродиализной установки
- •Глава пятнадцатая краткие технологии очистки конденсатов
- •15.1. Электромагнитный фильтр (эмф)
- •15.2. Особенности осветления турбинных и производственных конденсатов
- •Глава шестнадцатая Краткие технологии очистки сточных вод теплоэнергетики
- •16.1. Основные понятия о сточных водах тэс и котельных
- •16.2. Воды химводоочисток
- •16.3. Отработавшие растворы от промывок и консервации теплосилового оборудования
- •16.4. Теплые воды
- •16.5.Воды гидрозолоудаления
- •16.6. Обмывочные воды
- •16.7. Нефтезагрязненные воды
- •Часть II. Водно-химический режим
- •Глава вторая Химический контроль – основа водно-химического режима
- •Глава третья коррозия металла паросилового оборудования и методы борьбы с ней
- •3.1. Основные положения
- •3.2. Коррозия стали в перегретом паре
- •3.3. Коррозия тракта питательной воды и конденсатопроводов
- •3.4. Коррозия элементов парогенераторов
- •3.4.1. Коррозия парообразующих труб и барабанов парогенераторов во время их эксплуатации
- •3.4.2. Коррозия пароперегревателей
- •3.4.3. Стояночная коррозия парогенераторов
- •3.5. Коррозия паровых турбин
- •3.6. Коррозия конденсаторов турбин
- •3.7. Коррозия оборудования подпиточного и сетевого трактов
- •3.7.1. Коррозия трубопроводов и водогрейных котлов
- •3.7.2. Коррозия трубок теплообменных аппаратов
- •3.7.3. Оценка коррозионного состояния действующих систем горячего водоснабжения и причины коррозии
- •3.8. Консервация теплоэнергетического оборудования и теплосетей
- •3.8.1. Общее положение
- •3.8.2. Способы консервации барабанных котлов
- •3.8.3. Способы консервации прямоточных котлов
- •3.8.4. Способы консервации водогрейных котлов
- •3.8.5. Способы консервации турбоустановок
- •3.8.6. Консервация тепловых сетей
- •3.8.7. Краткие характеристики применяемых химических реагентов для консервации и меры предосторожности при работе с ними Водный раствор гидразингидрата n2н4·н2о
- •Водный раствор аммиака nh4(oh)
- •Трилон б
- •Тринатрийфосфат Na3po4·12н2о
- •Едкий натр NaOh
- •Силикат натрия (жидкое стекло натриевое)
- •Гидроксид кальция (известковый раствор) Са(он)2
- •Контактный ингибитор
- •Летучие ингибиторы
- •Глава четвертая отложения в энергетическом оборудовании и способы устранения
- •4.1. Отложения в парогенераторах и теплообменниках
- •4.2. Состав, структура и физические свойства отложений
- •4.3. Образование отложений на внутренних поверхностях нагрева парогенераторов с многократной циркуляцией и теплообменников
- •4.3.1. Условия образования твердой фазы из солевых растворов
- •4.3.2. Условия образования щелочно-земельных накипей
- •4.3.3. Условия образования ферро - и алюмосиликатных накипей
- •4.3.4. Условия образования железоокисных и железофосфатных накипей
- •4.3.5. Условия образования медных накипей
- •4.3.6. Условия образования отложений легкорастворимых соединений
- •4.4. Образование отложений на внутренних поверхностях прямоточных парогенераторов
- •4.5. Образование отложений на охлаждаемых поверхностях конденсаторов и по такту охлаждающей воды
- •4.6. Отложения по паровому тракту
- •4.6.1. Поведение примесей пара в пароперегревателе
- •4.6.2. Поведение примесей пара в проточной части паровых турбин
- •4.7. Образование отложений в водогрейном оборудовании
- •4.7.1. Основные сведения об отложениях
- •4.7.2. Организация химического контроля и оценка интенсивности накипеобразования в водогрейном оборудовании
- •4.8. Химические очистки оборудования тэс и котельных
- •4.8.1. Назначение химических очисток и выбор реагентов
- •4.8.2. Эксплуатационные химические очистки паровых турбин
- •4.8.3. Эксплуатационные химические очистки конденсаторов и сетевых подогревателей
- •4.8.4. Эксплуатационные химические очистки водогрейных котлов Общие положения
- •Технологические режимы очистки
- •4.8.5. Важнейшие реагенты для удаления отложений из водогрейных и паровых котлов низкого и среднего давлений
- •Глава пятая водно-химический режим (вхр) в энергетике
- •5.1. Водно-химические режимы барабанных котлов
- •5.1.1. Физико-химическая характеристика внутрикотловых процессов
- •5.1.2. Методы коррекционной обработки котловой и питательной воды
- •5.1.2.1. Фосфатная обработка котловой воды
- •5.1.2.2. Амминирование и гидразинная обработка питательной воды
- •5.1.3. Загрязнения пара и способы их удаления
- •5.1.3.1. Основные положения
- •5.1.3.2. Продувка барабанных котлов тэс и котельных
- •5.1.3.3. Ступенчатое испарение и промывка пара
- •5.1.4. Влияние водно-химического режима на состав и структуру отложений
- •5.2. Водно-химические режимы блоков скд
- •5.3. Водно-химический режим паровых турбин
- •5.3.1. Поведение примесей в проточной части турбин
- •5.3.2. Водно-химический режим паровых турбин высоких и сверхвысоких давлений
- •5.3.3. Водно-химический режим турбин насыщенного пара
- •5.4. Водный режим конденсаторов турбин
- •5.5. Водно-химический режим тепловых сетей
- •5.5.1. Основные положения и задачи
- •5.5.2. Источники загрязнения воды тепловых сетей окислами железа
- •5.5.3. Повышение надежности водно-химического режима теплосетей
- •5.5.4. Особенности водно-химического режима при эксплуатации водогрейных котлов, сжигающих мазутное топливо
- •5.6. Проверка эффективности проводимых на тэс, котельных водно-химических режимов
- •Часть III Случаи аварийных ситуаций в теплоэнергетике из-за нарушений водно-химического режима
- •Оборудование водоподготовительных установок (впу) останавливает котельную и заводы
- •Карбонат кальция задает загадки…
- •Магнитная обработка воды перестала предотвращать карбонатно-кальциевое накипеобразование. Почему?
- •Как предупредить отложения и коррозию в небольших водогрейных котлах
- •Какие соединения железа осаждаются в водогрейных котлах?
- •В трубках псв образуются отложения из силиката магния
- •Как взрываются деаэраторы?
- •Как спасти трубопроводы умягченной воды от коррозии?
- •Соотношение концентраций ионов в исходной воде определяет агрессивность котловой воды
- •Почему «горели» трубы только заднего экрана?
- •Как удалять из экранных труб органо-железистые отложения?
- •Химические «перекосы» в котловой воде
- •Эффективна ли периодическая продувка котлов в борьбе с железоокисным преобразованием?
- •Свищи в трубах котла появились до начала его эксплуатации!
- •Почему прогрессировала стояночная коррозия в самых «молодых» котлах?
- •Почему разрушались трубы в поверхностном пароохладителе?
- •Чем опасен котлам конденсат?
- •Основные причины аварийности тепловых сетей
- •Проблемы котельных птицепрома Омского региона
- •Почему не работали цтп в Омске
- •Причина высокой аварийности систем теплоснабжения в Советском районе г. Омска
- •Почему высока коррозионная аварийность на новых трубопроводах теплосети?
- •Сюрпризы природы? Белое море наступает на Архангельск
- •Река Омь угрожает аварийным остановом теплоэнергетического и нефтехимического комплексов г. Омска?
- •– Увеличена дозировка коагулянта на предочистку;
- •Выписка из «Правил технической эксплуатации электрических станций и сетей», утв. 19.06.2003
- •Требования к приборам ахк (Автоматика химического контроля)
- •Требования к средствам лабораторного контроля
- •Сравнение технических характеристик приборов различных фирм производителей
- •Содержание
- •Глава 10. Очистка воды от растворенных газов 112
- •Глава 4. Отложения в энергетическом оборудовании
- •Глава 5. Водно-химические режимы (вхр) в энергетике 256
- •Часть III. Случаи аварийных ситуаций в теплоэнергетике по вине водно-химического режима
14.3. Расчет декарбонизатора с насадкой из колец Рашига
Исходными данными при проектировании декарбонизатора являются производительность, определяемая местом включения декарбонизатора в схему ВПУ, концентрация CO2 на входе и выходе из декарбонизатора, температура обрабатываемой воды.
1. Концентрация СО2 на входе в декарбонизатор для схем в отсутствие известкования определяется по соотношению
где Щб – щелочность бикарбонатная после предочистки.
2. Концентрация СО2 на входе в декарбонизатор в схемах предочистки с рН ≈ 10,2 рассчитывается с учетом удаления СО2 исходной воды при известковании и остаточных бикарбонатной и карбонатной щелочностей и соответствующих мольных масс и эквивалентов по следующей формуле:
3. Количество СО2, удаленного в декарбонизаторе:
4.
Необходимая площадь десорбции при
температуре 30 °С [с учетом коэффициента
десорбции Кж
= 0,50 м3/(м2·ч);
средней движущей силы десорбции
определяемых
в справочной литературе]:
5. Площадь требуемой поверхности насадки
6. Объем насадки при удельной поверхности колец Рашига fкр = 206 м2/м3.
7. Площадь поперечного сечения декарбонизатора при плотности орошения δ = 60 м3/(м2·ч)
.
8. Диаметр декарбонизатора
9. Высота насадки колец Рашига
10. Расход воздуха на декарбонизацию воды
.
11. Аэродинамическое сопротивление декарбонизатора
.
14.4. Расчет фильтров смешанного действия (фсд)
Как известно, ФСД с внутренней регенерацией устанавливаются в схеме автономных обессоливающих установок загрязненных станционных дренажей и в некоторых схемах доочистки воды и конденсатов.
ФСД с выносной регенерацией применяются, как правило, для обессоливания турбинных конденсатов, что определяет производительность соответствующих фильтров.
Расчет ФСД с внутренней регенерацией производительностью Q=150 м3/ч
1. Требуемая площадь фильтрования при скорости фильтрования ω = 50 м/ч
2. Выбираем из номенклатуры оборудования ВПУ стандартный фильтр ФСД‑2,0-6, f = 3,14 м2, высотой слоя 1200 мм при соотношении К:A = 1:1.
3. Длительность фильтроцикла ФСД с учетом регенерируемости шихты после пропуска 104 м3 смеси ионитов
4. Суточное число регенераций фильтра
5. Расход 100-процентной H2SО4 на регенерацию (bк = 70 кг/м3)
6. Суточный расход 100-процентной H2SО4 на регенерацию
7. Расход 100-процентного NaOH на регенерацию (bщ = 100 кг/м3)
8. Суточный расход 100-процентного NaOH на регенерацию
9. Расход воды на разделение смешанной шихты (ωразд = 10 м/ч; τразд = 25 мин)
10. Объем воды на установление встречных потоков воды до начала регенерации (ωв.п = 5 м/ч; τв.п = 10 мин)
11. Расход воды на приготовление 3-процентной H2SО4
12. Расход воды на приготовление 4-процентного NaOH
13. Расход воды на раздельную одновременную отмывку катионита и анионита встречными потоками (ωр.о = 5 м/ч; τр.о = 60 мин)
14.
Расход воды на доотмывку смешанной
шихты после перемешивания ее воздухом
(
15. Суммарный расход воды на собственные нужды ФСД
16. Часовой расход воды на собственные нужды ФСД
17. Время пропуска регенерационного раствора кислоты (ωк = 5 м/ч)
18. Время пропуска регенерационного раствора щелочи (ωщ = 5 м/ч)
19. Время доотмывки смешанной шихты (ωдо = 10 м/ч)
20. Суммарное время регенерации ФСД с учетом времени перемешивания шихты воздухом (τпер = 30 мин) и затрат времени на неучтенные операции (τнеучт = 30 мин)
21. Объем набухших катионита и анионита в фильтрах
22.
Объем каждого ионита в воздушно-сухом
состоянии
23. Количество воздушно-сухих ионитов, загруженных в фильтры
т/м3;
т/м3);
24. Расход катионита и анионита за первый год эксплуатации при температуре до 40 °С (потеря катионита составляет 15 %, анионита 10 %)
25. Расход катионита и анионита в каждый последующий год (потеря катионита составляет 10 %, анионита 5 %)
26. Полное количество катионита КУ-2 (срок службы катионита 5 лет), которое надо заготовить для работы ФСД в течение 5 лет
.
27. Полное количество анионита АВ-17 (срок службы анионита 8 лет), которое надо заготовить для работы ФСД в течение 8 лет:
.
Расчет ФСД с внешней регенерацией
1. Выбор количества и типа рабочих ФСД, а также фильтров – регенераторов катионита, анионита, и фильтров готовой смеси (ФРК, ФРА, ФГС) производится в соответствии с положениями, приведенными в рекомендованной литературе.
2. Расчет длительности фильтроцикла ФСД можно осуществлять с учетом объемов катионита и анионита в смеси, значений их рабочих емкостей и концентраций загрязняющих примесей в турбинном конденсате, определяемых величиной присоса в конденсаторе и показателями качества охлаждающей воды.
3. Расход реагентов и воды собственных нужд при внешней регенерации определяют по методике, аналогичной применительно к ФСД с внутренней регенерацией. Дополнительные расчеты связаны с определением следующих показателей, специфичных для внешней регенерации шихты.
4. Расход воды в кубических метрах на гидроперегрузку шихты из ФСД в ФРК (ωгп = 12,5 м/ч; τгп = 0,5 ч).
5. Расход воды в кубических метрах на гидроперегрузку анионита из ФРК в ФРА (ωгп. а = 15 м/ч; τгп. а = 0,25 ч).
6. Расход воды в кубических метрах на гидроперегрузку катионита из ФРК в ФГС (ωгп. к = 15 м/ч; τгп. к = 0,33 ч).
7.
Расход воды в кубических метрах на
гидроперегрузку регенерированного
анионита из ФРА в ФГС (= 15 м/ч;
= 0,33 ч).
8.
Расход воды в кубических метрах на
окончательную гидроперегрузку смешанной
шихты из ФГС в рабочий ФСД (= 12,5 м/ч;
= 0,5 ч).