
- •Водоподготовка и водно-химические режимы в теплоэнергетике
- •Предисловие
- •Часть I. Водоподготовка Глава первая Основные характеристики природной воды
- •1.1. Поступление примесей в воду
- •1.2. Классификация, характеристика вод и их примесей
- •1.3. Характеристика ионизированных примесей
- •1.4. Кремнесодержащие соединения и органические примеси
- •1.5. Закономерности изменения количественного состава примесей по районам и сезонам для поверхностных и подземных вод
- •1.6. Технологические, качественные показатели воды
- •1.7. Биологические показатели качества воды
- •Глава вторая Вода в теплоэнергетике
- •2.1. Применение воды в качестве теплоносителя
- •2.2. Принципиальные схемы обращения воды в тракте
- •2.3. Источники загрязнения
- •Характеристика загрязнений трактов тэс и аэс
- •2.4. Влияние примесей воды на надежность работы теплоэнергетического оборудования
- •2.5. Выбор водоисточника и производительности водоподготовительных установок
- •Глава третья
- •Глава четвертая Предварительная очистка воды и физико-химические процессы
- •4.1. Очистка воды методом коагуляции
- •4.2. Осаждение методами известкования и содоизвесткования
- •Глава пятая Фильтрование воды на механических фильтрах
- •Фильтрующие материалы и основные характеристики структуры фильтрованных слоев
- •Глава шестая Обессоливание воды
- •6.1. Физико-химические основы ионного обмена
- •6.2. Ионообменные материалы и их характеристики
- •6.3. Технология ионного обмена
- •6.4. Малосточные схемы ионитных водоподготовок
- •6.5. Автоматизация водоподготовительных установок
- •6.6. Перспективные технологии водоочистки
- •6.6.1. Противоточная технология ионирования
- •Назначение и область применения
- •Основные принципиальные схемы впу
- •Глава седьмая Термический метод очистки воды
- •7.1. Метод дистилляции
- •7.2. Предотвращение накипеобразования в испарительных установках физическими методами
- •7.3. Предотвращение накипеобразования в испарительных установках химическими, конструктивными и технологическими методами
- •Глава восьмая Очистка высокоминерализованных вод
- •8.1. Обратный осмос
- •8.2. Электродиализ
- •Глава девятая Водоподготовка в тепловых сетях с непосредственным водозабором
- •9.1. Основные положения
- •Нормы органолептических показателей воды
- •Нормы бактериологических показателей воды
- •Показатели пдк (нормы) химического состава воды
- •9.2. Подготовка добавочной воды методом н-катионирования с голодной регенерацией
- •9.3. Снижение карбонатной жесткости (щелочности) добавочной воды методом подкисления
- •9.4. Декарбонизация воды методом известкования
- •9.6. Магнитная противонакипная обработка добавочной воды
- •9.7. Подготовка воды для закрытых тепловых сетей
- •9.8. Подготовка воды для местных систем горячего водоснабжения
- •9.9. Подготовка воды для отопительных систем теплоснабжения
- •9.10. Технология обработки воды комплексонами в системах теплоснабжения
- •Глава десятая Очистка воды от растворенных газов
- •10.1. Общие положения
- •10.2. Удаление свободной углекислоты
- •Высота слоя в метрах насадки из колец Рашига определяется из уравнения:
- •10.3. Удаление кислорода физико-химическими методами
- •10.4. Деаэрация в деаэраторах атмосферного и пониженного давления
- •10.5. Химические методы удаления газов из воды
- •Глава одиннадцатая Стабилизационная обработка воды
- •11.1. Общие положения
- •11.2. Стабилизация воды подкислением
- •11.3. Фосфатирование охлаждающей воды
- •11.4. Рекарбонизация охлаждающей воды
- •Глава двенадцатая
- •Применение окислителей для борьбы
- •С биологическим обрастанием теплообменников
- •И обеззараживания воды
- •Глава тринадцатая Расчет механических и ионообменных фильтров
- •13.1. Расчет механических фильтров
- •13.2. Расчет ионитных фильтров
- •Глава четырнадцатая Примеры расчета водоподготовительных установок
- •14.1. Общие положения
- •14.2. Расчет установки химического обессоливания с параллельным включением фильтров
- •14.3. Расчет декарбонизатора с насадкой из колец Рашига
- •14.4. Расчет фильтров смешанного действия (фсд)
- •14.5. Расчет обессоливающей установки с блочным включением фильтров (расчет «цепочек»)
- •Особые условия и рекомендации
- •Расчет н-катионитных фильтров 1-й ступени ()
- •Расчет анионитных фильтров 1-й ступени (а1)
- •Расчет н-катионитных фильтров 2-й ступени ()
- •Расчет анионитных фильтров 2-й ступени (а2)
- •14.6. Расчет электродиализной установки
- •Глава пятнадцатая краткие технологии очистки конденсатов
- •15.1. Электромагнитный фильтр (эмф)
- •15.2. Особенности осветления турбинных и производственных конденсатов
- •Глава шестнадцатая Краткие технологии очистки сточных вод теплоэнергетики
- •16.1. Основные понятия о сточных водах тэс и котельных
- •16.2. Воды химводоочисток
- •16.3. Отработавшие растворы от промывок и консервации теплосилового оборудования
- •16.4. Теплые воды
- •16.5.Воды гидрозолоудаления
- •16.6. Обмывочные воды
- •16.7. Нефтезагрязненные воды
- •Часть II. Водно-химический режим
- •Глава вторая Химический контроль – основа водно-химического режима
- •Глава третья коррозия металла паросилового оборудования и методы борьбы с ней
- •3.1. Основные положения
- •3.2. Коррозия стали в перегретом паре
- •3.3. Коррозия тракта питательной воды и конденсатопроводов
- •3.4. Коррозия элементов парогенераторов
- •3.4.1. Коррозия парообразующих труб и барабанов парогенераторов во время их эксплуатации
- •3.4.2. Коррозия пароперегревателей
- •3.4.3. Стояночная коррозия парогенераторов
- •3.5. Коррозия паровых турбин
- •3.6. Коррозия конденсаторов турбин
- •3.7. Коррозия оборудования подпиточного и сетевого трактов
- •3.7.1. Коррозия трубопроводов и водогрейных котлов
- •3.7.2. Коррозия трубок теплообменных аппаратов
- •3.7.3. Оценка коррозионного состояния действующих систем горячего водоснабжения и причины коррозии
- •3.8. Консервация теплоэнергетического оборудования и теплосетей
- •3.8.1. Общее положение
- •3.8.2. Способы консервации барабанных котлов
- •3.8.3. Способы консервации прямоточных котлов
- •3.8.4. Способы консервации водогрейных котлов
- •3.8.5. Способы консервации турбоустановок
- •3.8.6. Консервация тепловых сетей
- •3.8.7. Краткие характеристики применяемых химических реагентов для консервации и меры предосторожности при работе с ними Водный раствор гидразингидрата n2н4·н2о
- •Водный раствор аммиака nh4(oh)
- •Трилон б
- •Тринатрийфосфат Na3po4·12н2о
- •Едкий натр NaOh
- •Силикат натрия (жидкое стекло натриевое)
- •Гидроксид кальция (известковый раствор) Са(он)2
- •Контактный ингибитор
- •Летучие ингибиторы
- •Глава четвертая отложения в энергетическом оборудовании и способы устранения
- •4.1. Отложения в парогенераторах и теплообменниках
- •4.2. Состав, структура и физические свойства отложений
- •4.3. Образование отложений на внутренних поверхностях нагрева парогенераторов с многократной циркуляцией и теплообменников
- •4.3.1. Условия образования твердой фазы из солевых растворов
- •4.3.2. Условия образования щелочно-земельных накипей
- •4.3.3. Условия образования ферро - и алюмосиликатных накипей
- •4.3.4. Условия образования железоокисных и железофосфатных накипей
- •4.3.5. Условия образования медных накипей
- •4.3.6. Условия образования отложений легкорастворимых соединений
- •4.4. Образование отложений на внутренних поверхностях прямоточных парогенераторов
- •4.5. Образование отложений на охлаждаемых поверхностях конденсаторов и по такту охлаждающей воды
- •4.6. Отложения по паровому тракту
- •4.6.1. Поведение примесей пара в пароперегревателе
- •4.6.2. Поведение примесей пара в проточной части паровых турбин
- •4.7. Образование отложений в водогрейном оборудовании
- •4.7.1. Основные сведения об отложениях
- •4.7.2. Организация химического контроля и оценка интенсивности накипеобразования в водогрейном оборудовании
- •4.8. Химические очистки оборудования тэс и котельных
- •4.8.1. Назначение химических очисток и выбор реагентов
- •4.8.2. Эксплуатационные химические очистки паровых турбин
- •4.8.3. Эксплуатационные химические очистки конденсаторов и сетевых подогревателей
- •4.8.4. Эксплуатационные химические очистки водогрейных котлов Общие положения
- •Технологические режимы очистки
- •4.8.5. Важнейшие реагенты для удаления отложений из водогрейных и паровых котлов низкого и среднего давлений
- •Глава пятая водно-химический режим (вхр) в энергетике
- •5.1. Водно-химические режимы барабанных котлов
- •5.1.1. Физико-химическая характеристика внутрикотловых процессов
- •5.1.2. Методы коррекционной обработки котловой и питательной воды
- •5.1.2.1. Фосфатная обработка котловой воды
- •5.1.2.2. Амминирование и гидразинная обработка питательной воды
- •5.1.3. Загрязнения пара и способы их удаления
- •5.1.3.1. Основные положения
- •5.1.3.2. Продувка барабанных котлов тэс и котельных
- •5.1.3.3. Ступенчатое испарение и промывка пара
- •5.1.4. Влияние водно-химического режима на состав и структуру отложений
- •5.2. Водно-химические режимы блоков скд
- •5.3. Водно-химический режим паровых турбин
- •5.3.1. Поведение примесей в проточной части турбин
- •5.3.2. Водно-химический режим паровых турбин высоких и сверхвысоких давлений
- •5.3.3. Водно-химический режим турбин насыщенного пара
- •5.4. Водный режим конденсаторов турбин
- •5.5. Водно-химический режим тепловых сетей
- •5.5.1. Основные положения и задачи
- •5.5.2. Источники загрязнения воды тепловых сетей окислами железа
- •5.5.3. Повышение надежности водно-химического режима теплосетей
- •5.5.4. Особенности водно-химического режима при эксплуатации водогрейных котлов, сжигающих мазутное топливо
- •5.6. Проверка эффективности проводимых на тэс, котельных водно-химических режимов
- •Часть III Случаи аварийных ситуаций в теплоэнергетике из-за нарушений водно-химического режима
- •Оборудование водоподготовительных установок (впу) останавливает котельную и заводы
- •Карбонат кальция задает загадки…
- •Магнитная обработка воды перестала предотвращать карбонатно-кальциевое накипеобразование. Почему?
- •Как предупредить отложения и коррозию в небольших водогрейных котлах
- •Какие соединения железа осаждаются в водогрейных котлах?
- •В трубках псв образуются отложения из силиката магния
- •Как взрываются деаэраторы?
- •Как спасти трубопроводы умягченной воды от коррозии?
- •Соотношение концентраций ионов в исходной воде определяет агрессивность котловой воды
- •Почему «горели» трубы только заднего экрана?
- •Как удалять из экранных труб органо-железистые отложения?
- •Химические «перекосы» в котловой воде
- •Эффективна ли периодическая продувка котлов в борьбе с железоокисным преобразованием?
- •Свищи в трубах котла появились до начала его эксплуатации!
- •Почему прогрессировала стояночная коррозия в самых «молодых» котлах?
- •Почему разрушались трубы в поверхностном пароохладителе?
- •Чем опасен котлам конденсат?
- •Основные причины аварийности тепловых сетей
- •Проблемы котельных птицепрома Омского региона
- •Почему не работали цтп в Омске
- •Причина высокой аварийности систем теплоснабжения в Советском районе г. Омска
- •Почему высока коррозионная аварийность на новых трубопроводах теплосети?
- •Сюрпризы природы? Белое море наступает на Архангельск
- •Река Омь угрожает аварийным остановом теплоэнергетического и нефтехимического комплексов г. Омска?
- •– Увеличена дозировка коагулянта на предочистку;
- •Выписка из «Правил технической эксплуатации электрических станций и сетей», утв. 19.06.2003
- •Требования к приборам ахк (Автоматика химического контроля)
- •Требования к средствам лабораторного контроля
- •Сравнение технических характеристик приборов различных фирм производителей
- •Содержание
- •Глава 10. Очистка воды от растворенных газов 112
- •Глава 4. Отложения в энергетическом оборудовании
- •Глава 5. Водно-химические режимы (вхр) в энергетике 256
- •Часть III. Случаи аварийных ситуаций в теплоэнергетике по вине водно-химического режима
6.3. Технология ионного обмена
В технологии водоподготовки для удаления определенных ионов из воды применяют два процесса: катионирование – удаление катионов и анионирование – удаление анионов. В зависимости от обменного иона процессы и аппараты получают названия: Н-катионирование, Н-катионный фильтр; ОН-анионирование, ОН‑анионный фильтр и т.п. Соответственно называется и фильтрат, полученный в этих процесах: Н-катионированная вода; ОН-анионированная вода и т.п. Процессы катионирования воды могут иметь вполне самостоятельное значение (для умягчения воды), в то время как процессы анионирования применяются лишь в комплексе с катионированием (в схемах обессоливания воды). Процессы ионирования осуществляют в различных аппаратах, но наибольшее распространение получили насыпные ионитные фильтры.
Na-катионирование. Этот процесс применяется для умягчения воды и имеет самостоятельное значение при подготовке воды малой щелочности для котлов низкого давления и подпитки воды теплосетей. При Na-катионировании воду пропускают через слой катионита, находящегося в исходном состоянии в Na-форме. При этом процессе происходит удаление из воды ионов Са2+ и Mg2+ в обмен на эквивалентное количество ионов Na+, согласно следующим реакциям:
2R/Na+
+
Ca2+
R2/Ca2+
+
2Na+;
2R/Na+
+
Mg2+
R2/Mg2+
+
2Na+,
где R обозначает комплекс матрицы и функциональной группы без обменного иона (его принято считать одновалентным).
Из приведенных реакций видно, что анионный состав воды при Na-катионировании остается постоянным, поэтому и суммарная концентрация катионов, участвующих в этом процессе, также остается постоянной. Однако массовая концентрация катионов в растворе несколько возрастает, поскольку эквивалентная масса иона натрия выше эквивалентных масс ионов кальция и магния. Так, при обмене ионов Са2+ на ионы Na+ солесодержание воды возрастает в 46/40 раз, поскольку вместо одного сорбированного иона Са2+ в раствор поступают два иона Na+. Тот же пересчет при сорбции ионов магния даст увеличение солесодержания в 46/24 раза.
Таким образом, солесодержание Na-катионированной воды несколько выше солесодержания исходной. Поскольку при Na-катионировании не происходит изменения анионного состава примесей воды, щелочность ее не изменяется. Остаточная жесткость фильтрата определяется условиями регенерации катионита и в лучшем случае составляет не более 5 мкмоль/дм3.
Регенерация истощенного катионита производится пропуском через него раствора поваренной соли. Реакцию регенерации катионита раствором NaCl можно записать в следующей форме:
R2/Ca2+
+nNa+2R/Na+
+ Ca2+
+
(n-2)Na+;
R2/Mg2+
+ nNa+2R/Na+
+ Mg2+
+
(n-2)Na+,
где n – избыток NaCl против его стехиометрического количества.
Н-катионирование. Назначением Н-катионирования является удаление всех катионов из воды с заменой их на ионы водорода. Оно применяется в схемах совместно с другими процессами ионирования. Обмен катионов при Н-катиониро-вании протекает согласно реакциям:
2R/Н+
+ Ca2+R2/Ca2+
+ 2Н+;
2R/Н+
+ Mg2+R2/Mg2+
+ 2Н+;
R/H+
+ Na+R/Na+
+ H+.
Все катионы, поступающие вместе с водой на фильтрующий слой, сорбируются в начале процесса в верхних участках этого слоя. Однако по мере срабатывания части слоя катионы, обладающие большей селективностью, вытесняют сорбированные на этом участке катионы, обладающие меньшей сорбционной способностью, и последние сорбируются на последующих по ходу воды участках фильтрующего слоя. Таким образом, образуются зоны поглощения катионов. Ближе к нижней границе слоя располагается зона поглощения ионов Na+, над ней – смешанная зона поглощения Mg2+ и Na+, а еще выше – зона поглощения Са2+, Mg2+ и Na+. Суммарная ширина этих зон определяет высоту рабочей зоны катионита. Над ней располагается зона истощенного катионита, а под ней – свежего катионита. При работе Н-катионитного фильтра наблюдаются два периода. В первом периоде происходит полное поглощение всех катионов до момента достижения зоной поглощения ионов Na+ нижней границы слоя катионита (до проскока Na+). До этого момента на каждый эквивалент поглощенных из раствора ионов Са2+, Mg2+ и Nа+ в раствор поступает один эквивалент ионов H+. Выделяющиеся в воду ионы водорода реагируют с бикарбонат-ионом:
.
Таким образом, при Н-катионировании одновременно с основным процессом происходит разрушение бикарбонатной щелочности воды. Фильтрат приобретает кислотность, равную остаточной концентрации ионов Н+.
Регенерация Н-катионитного фильтра производится 1–1,5-процентным раствором серной кислоты, как более дешевой и удобной в эксплуатации, согласно реакциям
R2/Ca2+
+ nН+
2R/Н+
+ Ca2+ +
(n-2)Н+;
R2/Mg2+
+ nН+
2R/Н+
+ Mg2+
+ (n-2)Н+;
R/Na+
+ nН+
R/Н+
+ Na+
+ (n-1)Н+.
Серьезным ограничением при регенерации серной кислотой является возможное загипсовывание катионита в результате образования CaSО4. Это обстоятельство заставляет ограничивать крепость регенерационного раствора или осуществлять двухступенчатую регенерацию. В этом случае регенерация производится сначала 0,75-процентным раствором кислоты, а затем, когда основная масса ионов уже вытеснена, 5–6-процентным раствором кислоты. Однако такая схема регенерации создает известные неудобства при эксплуатации. Другим мероприятием для предотвращения выпадения гипса является ограничение времени контакта регенерационного раствора с катионитом.
Существенно снижается расход реагента при применении противоточной регенерации Н-катионитных фильтров (рис. 6.2). В этом случае раствор кислоты концентрацией 0,75–1,0 % пропускается в направлении, противоположном потоку воды, и отводится через дренажную систему, расположенную ниже верхней границы слоя на 0,2–0,5 м. Отмывку ведут в том же направлении, что и пропуск кислоты, причем отмывка следует сразу же за пропуском регенерационного раствора с целью скорейшей эвакуации этого раствора из фильтрующею слоя. Затем производят взрыхление верхней части слоя. Эта часть слоя не подвергается регенерации и не участвует в процессе ионного обмена. Ее роль сводится к удержанию той небольшой части грубодисперсных веществ, которые могут попасть на Н-катионитный фильтр с осветленной водой.
Противоионный эффект заметно проявляется при Н-катионировании вод со значительным содержанием ионов SO4 и Сl. Более того, при Н-катионировании таких вод на слабокислотных катионитах вследствие резкого понижения значения рН снижается обменная емкость этих катионитов за счет подавления диссоциации таких групп, как – СООН и – ОН.
Конструктивные затруднения в осуществлении чисто противоточной регенерации привели к созданию схемы ступенчато-противоточной регенерации фильтров, которая является промежуточным вариантом между прямоточной и противоточной регенерациями. Согласно этой схеме, раствор реагента пропускается последовательно через два отдельных отсека, загруженных различным количеством ионита, как это делается при прямоточной регенерации.
При этом ионит в верхнем отсеке регенерируется лучше, чем в нижнем. Пропуск же воды осуществляется сначала через нижний отсек, а затем через верхний. Эта система регенерации позволяет получить более качественную очистку при сокращении на 30–40 % количества реагента на регенерацию. Более эффективна регенерация при применении двухпоточно-противоточных фильтров со средней дренажной системой. При этом часть регенерационного раствора подается снизу противотоком, а одновременно другая часть раствора – сверху прямотоком. Отвод регенерационного раствора производится через среднюю дренажную систему (рис. 6.3). Взрыхление всего слоя в таком фильтре производится потоком воды снизу вверх с отводом воды через верхнюю дренажную систему. Такая регенерация позволяет получить воду очень высокого качества.
Рис. 6.2. Технологическая схема противоточной регенерации Н-катионитных фильтров:
I – пропуск раствора кислоты; II – отмывка; III – взрыхление верхнего слоя; IV – рабочий цикл.
|
Рис. 6.3. Принципиальная схема двухпоточно-противоточного фильтра:
1 – подвод обрабатываемой воды; 2 – отвод фильтрата; 3 – подвод регенерационного раствора; 4 – отвод регенерационного раствора; 5 – подвод воды для взрыхления; 6 – отвод взрыхляющей воды |
Анионирование воды производится с целью удаления из нее анионов; при сочетании анионирования с катионированием происходит удаление из воды как анионов, так и катионов, т. е. химическое обессоливание воды. При фильтровании через слой анионита происходит сорбция анионов согласно следующим реакциям:
;
+
.
Переход в воду ионов ОН- приводит к повышению ее рН, что в свою очередь сопровождается диссоциацией слабых кислот Н2СО3 и Н2Si3 и переводу их в ионное состояние. Следовательно, они также могут участвовать в реакциях обмена, но лишь при использовании высокоосновных анионитов:
;
.
Следует заметить, что при анионировании кислой воды возможность повышения концентрации ионов ОН- в воде исключается, так как эти ионы при переходе в воду связываются ионами водорода.
Если
высокоосновный анионит находится в
Cl-форме, то из воды сорбируются ионы
и
бикарбонат-ионы:
;
;
.
Согласно ряду селективности для анионов, в анионитном фильтре при использовании низкоосновных анионитов впереди идущей является зона ионов хлора, и они первыми проскакивают в фильтрат. Это дает возможность определять время выхода анионитного фильтра на регенерацию по концентрации хлоридов. При использовании высокоосновных анионитов впереди идущей является зона наименее сорбируемой кремниевой кислоты, над ней располагается смешанная зона поглощения кремниевой кислоты и бикарбонат-иона, а еще выше – смешанная зона этих анионов и анионов сильных кислот. По достижении фронта сорбции кремниевой кислоты нижней границы анионита начинается ее проскок, и это соответствует моменту отключения фильтра на регенерацию.
Регенерация анионитных фильтров производится обычно 4-процентным раствором NaOH, при этом происходят следующие реакции:
;
;
;
;
;
.
Остаточное
содержание ионов кремниевой кислоты
зависит от условий регенерации фильтра.
При прямоточной регенерации получения
воды с кремнесодержанием 0,1–0,15 мг/дм3
удельный расход щелочи должен более
чем в 5 раз превышать стехиометрический
(5,6 моль/моль против 1 моль/моль). В
настоящее время для анионитов применяют
противоточную и ступенчато-противоточную
схемы регенерации, позволяющие существенно
(на 30–40 %) уменьшить расход реагента. По
схеме ступенчато-противоточной
регенерации (рис. 6.4) раствор реагента
пропускается последовательно через
два отсека, загруженных различным
количеством анионита: в нижнем 70–75 %, в
верхнем 25–30 %. В этом же направлении
пропускается отмывочная вода. По
окончании отмывки фильтр переключается
на анионирование, при котором вода
проходит сначала через нижний отсек, а
затем через наиболее хорошо
отрегенерированный ионит верхнего
отсека. При загрузке обоих отсеков
высокоосновным анионитом остаточное
кремнесодержание, равное 0,1 мг/дм3
,
может быть обеспечено при удельном
расходеNaOH
в пределах 2–2,5 моль/моль.
Исходная
вода
Рис. 6.4. Технологическая схема ступенчато-противоточной регенерации:
I – взрыхление; II – пропуск регенерационного раствора; III – отмывка; IV – рабочий цикл
Основной задачей при использовании ОН-анионитных фильтров с высокоосновным анионитом в схемах обессоливания является удаление кремниевой кислоты из воды, поэтому чрезвычайно важно для повышения емкости анионита по кремниевой кислоте уменьшать содержание более селективного бикарбонат-иона в воде, поступающей на ионирование. В схемах ВПУ это осуществляется путем десорбции СО2 из кислой Н-катионированной воды в деаэраторах или декарбонизаторах.