
- •Водоподготовка и водно-химические режимы в теплоэнергетике
- •Предисловие
- •Часть I. Водоподготовка Глава первая Основные характеристики природной воды
- •1.1. Поступление примесей в воду
- •1.2. Классификация, характеристика вод и их примесей
- •1.3. Характеристика ионизированных примесей
- •1.4. Кремнесодержащие соединения и органические примеси
- •1.5. Закономерности изменения количественного состава примесей по районам и сезонам для поверхностных и подземных вод
- •1.6. Технологические, качественные показатели воды
- •1.7. Биологические показатели качества воды
- •Глава вторая Вода в теплоэнергетике
- •2.1. Применение воды в качестве теплоносителя
- •2.2. Принципиальные схемы обращения воды в тракте
- •2.3. Источники загрязнения
- •Характеристика загрязнений трактов тэс и аэс
- •2.4. Влияние примесей воды на надежность работы теплоэнергетического оборудования
- •2.5. Выбор водоисточника и производительности водоподготовительных установок
- •Глава третья
- •Глава четвертая Предварительная очистка воды и физико-химические процессы
- •4.1. Очистка воды методом коагуляции
- •4.2. Осаждение методами известкования и содоизвесткования
- •Глава пятая Фильтрование воды на механических фильтрах
- •Фильтрующие материалы и основные характеристики структуры фильтрованных слоев
- •Глава шестая Обессоливание воды
- •6.1. Физико-химические основы ионного обмена
- •6.2. Ионообменные материалы и их характеристики
- •6.3. Технология ионного обмена
- •6.4. Малосточные схемы ионитных водоподготовок
- •6.5. Автоматизация водоподготовительных установок
- •6.6. Перспективные технологии водоочистки
- •6.6.1. Противоточная технология ионирования
- •Назначение и область применения
- •Основные принципиальные схемы впу
- •Глава седьмая Термический метод очистки воды
- •7.1. Метод дистилляции
- •7.2. Предотвращение накипеобразования в испарительных установках физическими методами
- •7.3. Предотвращение накипеобразования в испарительных установках химическими, конструктивными и технологическими методами
- •Глава восьмая Очистка высокоминерализованных вод
- •8.1. Обратный осмос
- •8.2. Электродиализ
- •Глава девятая Водоподготовка в тепловых сетях с непосредственным водозабором
- •9.1. Основные положения
- •Нормы органолептических показателей воды
- •Нормы бактериологических показателей воды
- •Показатели пдк (нормы) химического состава воды
- •9.2. Подготовка добавочной воды методом н-катионирования с голодной регенерацией
- •9.3. Снижение карбонатной жесткости (щелочности) добавочной воды методом подкисления
- •9.4. Декарбонизация воды методом известкования
- •9.6. Магнитная противонакипная обработка добавочной воды
- •9.7. Подготовка воды для закрытых тепловых сетей
- •9.8. Подготовка воды для местных систем горячего водоснабжения
- •9.9. Подготовка воды для отопительных систем теплоснабжения
- •9.10. Технология обработки воды комплексонами в системах теплоснабжения
- •Глава десятая Очистка воды от растворенных газов
- •10.1. Общие положения
- •10.2. Удаление свободной углекислоты
- •Высота слоя в метрах насадки из колец Рашига определяется из уравнения:
- •10.3. Удаление кислорода физико-химическими методами
- •10.4. Деаэрация в деаэраторах атмосферного и пониженного давления
- •10.5. Химические методы удаления газов из воды
- •Глава одиннадцатая Стабилизационная обработка воды
- •11.1. Общие положения
- •11.2. Стабилизация воды подкислением
- •11.3. Фосфатирование охлаждающей воды
- •11.4. Рекарбонизация охлаждающей воды
- •Глава двенадцатая
- •Применение окислителей для борьбы
- •С биологическим обрастанием теплообменников
- •И обеззараживания воды
- •Глава тринадцатая Расчет механических и ионообменных фильтров
- •13.1. Расчет механических фильтров
- •13.2. Расчет ионитных фильтров
- •Глава четырнадцатая Примеры расчета водоподготовительных установок
- •14.1. Общие положения
- •14.2. Расчет установки химического обессоливания с параллельным включением фильтров
- •14.3. Расчет декарбонизатора с насадкой из колец Рашига
- •14.4. Расчет фильтров смешанного действия (фсд)
- •14.5. Расчет обессоливающей установки с блочным включением фильтров (расчет «цепочек»)
- •Особые условия и рекомендации
- •Расчет н-катионитных фильтров 1-й ступени ()
- •Расчет анионитных фильтров 1-й ступени (а1)
- •Расчет н-катионитных фильтров 2-й ступени ()
- •Расчет анионитных фильтров 2-й ступени (а2)
- •14.6. Расчет электродиализной установки
- •Глава пятнадцатая краткие технологии очистки конденсатов
- •15.1. Электромагнитный фильтр (эмф)
- •15.2. Особенности осветления турбинных и производственных конденсатов
- •Глава шестнадцатая Краткие технологии очистки сточных вод теплоэнергетики
- •16.1. Основные понятия о сточных водах тэс и котельных
- •16.2. Воды химводоочисток
- •16.3. Отработавшие растворы от промывок и консервации теплосилового оборудования
- •16.4. Теплые воды
- •16.5.Воды гидрозолоудаления
- •16.6. Обмывочные воды
- •16.7. Нефтезагрязненные воды
- •Часть II. Водно-химический режим
- •Глава вторая Химический контроль – основа водно-химического режима
- •Глава третья коррозия металла паросилового оборудования и методы борьбы с ней
- •3.1. Основные положения
- •3.2. Коррозия стали в перегретом паре
- •3.3. Коррозия тракта питательной воды и конденсатопроводов
- •3.4. Коррозия элементов парогенераторов
- •3.4.1. Коррозия парообразующих труб и барабанов парогенераторов во время их эксплуатации
- •3.4.2. Коррозия пароперегревателей
- •3.4.3. Стояночная коррозия парогенераторов
- •3.5. Коррозия паровых турбин
- •3.6. Коррозия конденсаторов турбин
- •3.7. Коррозия оборудования подпиточного и сетевого трактов
- •3.7.1. Коррозия трубопроводов и водогрейных котлов
- •3.7.2. Коррозия трубок теплообменных аппаратов
- •3.7.3. Оценка коррозионного состояния действующих систем горячего водоснабжения и причины коррозии
- •3.8. Консервация теплоэнергетического оборудования и теплосетей
- •3.8.1. Общее положение
- •3.8.2. Способы консервации барабанных котлов
- •3.8.3. Способы консервации прямоточных котлов
- •3.8.4. Способы консервации водогрейных котлов
- •3.8.5. Способы консервации турбоустановок
- •3.8.6. Консервация тепловых сетей
- •3.8.7. Краткие характеристики применяемых химических реагентов для консервации и меры предосторожности при работе с ними Водный раствор гидразингидрата n2н4·н2о
- •Водный раствор аммиака nh4(oh)
- •Трилон б
- •Тринатрийфосфат Na3po4·12н2о
- •Едкий натр NaOh
- •Силикат натрия (жидкое стекло натриевое)
- •Гидроксид кальция (известковый раствор) Са(он)2
- •Контактный ингибитор
- •Летучие ингибиторы
- •Глава четвертая отложения в энергетическом оборудовании и способы устранения
- •4.1. Отложения в парогенераторах и теплообменниках
- •4.2. Состав, структура и физические свойства отложений
- •4.3. Образование отложений на внутренних поверхностях нагрева парогенераторов с многократной циркуляцией и теплообменников
- •4.3.1. Условия образования твердой фазы из солевых растворов
- •4.3.2. Условия образования щелочно-земельных накипей
- •4.3.3. Условия образования ферро - и алюмосиликатных накипей
- •4.3.4. Условия образования железоокисных и железофосфатных накипей
- •4.3.5. Условия образования медных накипей
- •4.3.6. Условия образования отложений легкорастворимых соединений
- •4.4. Образование отложений на внутренних поверхностях прямоточных парогенераторов
- •4.5. Образование отложений на охлаждаемых поверхностях конденсаторов и по такту охлаждающей воды
- •4.6. Отложения по паровому тракту
- •4.6.1. Поведение примесей пара в пароперегревателе
- •4.6.2. Поведение примесей пара в проточной части паровых турбин
- •4.7. Образование отложений в водогрейном оборудовании
- •4.7.1. Основные сведения об отложениях
- •4.7.2. Организация химического контроля и оценка интенсивности накипеобразования в водогрейном оборудовании
- •4.8. Химические очистки оборудования тэс и котельных
- •4.8.1. Назначение химических очисток и выбор реагентов
- •4.8.2. Эксплуатационные химические очистки паровых турбин
- •4.8.3. Эксплуатационные химические очистки конденсаторов и сетевых подогревателей
- •4.8.4. Эксплуатационные химические очистки водогрейных котлов Общие положения
- •Технологические режимы очистки
- •4.8.5. Важнейшие реагенты для удаления отложений из водогрейных и паровых котлов низкого и среднего давлений
- •Глава пятая водно-химический режим (вхр) в энергетике
- •5.1. Водно-химические режимы барабанных котлов
- •5.1.1. Физико-химическая характеристика внутрикотловых процессов
- •5.1.2. Методы коррекционной обработки котловой и питательной воды
- •5.1.2.1. Фосфатная обработка котловой воды
- •5.1.2.2. Амминирование и гидразинная обработка питательной воды
- •5.1.3. Загрязнения пара и способы их удаления
- •5.1.3.1. Основные положения
- •5.1.3.2. Продувка барабанных котлов тэс и котельных
- •5.1.3.3. Ступенчатое испарение и промывка пара
- •5.1.4. Влияние водно-химического режима на состав и структуру отложений
- •5.2. Водно-химические режимы блоков скд
- •5.3. Водно-химический режим паровых турбин
- •5.3.1. Поведение примесей в проточной части турбин
- •5.3.2. Водно-химический режим паровых турбин высоких и сверхвысоких давлений
- •5.3.3. Водно-химический режим турбин насыщенного пара
- •5.4. Водный режим конденсаторов турбин
- •5.5. Водно-химический режим тепловых сетей
- •5.5.1. Основные положения и задачи
- •5.5.2. Источники загрязнения воды тепловых сетей окислами железа
- •5.5.3. Повышение надежности водно-химического режима теплосетей
- •5.5.4. Особенности водно-химического режима при эксплуатации водогрейных котлов, сжигающих мазутное топливо
- •5.6. Проверка эффективности проводимых на тэс, котельных водно-химических режимов
- •Часть III Случаи аварийных ситуаций в теплоэнергетике из-за нарушений водно-химического режима
- •Оборудование водоподготовительных установок (впу) останавливает котельную и заводы
- •Карбонат кальция задает загадки…
- •Магнитная обработка воды перестала предотвращать карбонатно-кальциевое накипеобразование. Почему?
- •Как предупредить отложения и коррозию в небольших водогрейных котлах
- •Какие соединения железа осаждаются в водогрейных котлах?
- •В трубках псв образуются отложения из силиката магния
- •Как взрываются деаэраторы?
- •Как спасти трубопроводы умягченной воды от коррозии?
- •Соотношение концентраций ионов в исходной воде определяет агрессивность котловой воды
- •Почему «горели» трубы только заднего экрана?
- •Как удалять из экранных труб органо-железистые отложения?
- •Химические «перекосы» в котловой воде
- •Эффективна ли периодическая продувка котлов в борьбе с железоокисным преобразованием?
- •Свищи в трубах котла появились до начала его эксплуатации!
- •Почему прогрессировала стояночная коррозия в самых «молодых» котлах?
- •Почему разрушались трубы в поверхностном пароохладителе?
- •Чем опасен котлам конденсат?
- •Основные причины аварийности тепловых сетей
- •Проблемы котельных птицепрома Омского региона
- •Почему не работали цтп в Омске
- •Причина высокой аварийности систем теплоснабжения в Советском районе г. Омска
- •Почему высока коррозионная аварийность на новых трубопроводах теплосети?
- •Сюрпризы природы? Белое море наступает на Архангельск
- •Река Омь угрожает аварийным остановом теплоэнергетического и нефтехимического комплексов г. Омска?
- •– Увеличена дозировка коагулянта на предочистку;
- •Выписка из «Правил технической эксплуатации электрических станций и сетей», утв. 19.06.2003
- •Требования к приборам ахк (Автоматика химического контроля)
- •Требования к средствам лабораторного контроля
- •Сравнение технических характеристик приборов различных фирм производителей
- •Содержание
- •Глава 10. Очистка воды от растворенных газов 112
- •Глава 4. Отложения в энергетическом оборудовании
- •Глава 5. Водно-химические режимы (вхр) в энергетике 256
- •Часть III. Случаи аварийных ситуаций в теплоэнергетике по вине водно-химического режима
Глава четвертая Предварительная очистка воды и физико-химические процессы
4.1. Очистка воды методом коагуляции
Под коагуляцией понимают физико-химический процесс слипания коллоидных частиц и образования грубодисперсной макрофазы (флоккул) с последующим ее выделением из воды. Схема коагуляционной структуры показана на рис. 4.1.
Рис. 4.1. Схема коагуляционной структуры:
1 – частицы колоидно–дисперсной фазы; 2 – дестабилизированные участки поверхности; 3 – участки поверхности, сохраняющие устойчивость; 4 – полости, заполненные водой; 5 – грубодисперсная примесь
В качестве реагентов, называемых коагулянтами, обычно применяют сернокислые соли: [Al2(SO4)3·18H2O] или (FeSO4·7H2O). Эти соли в воде почти полностью диссоциируют:
|
|
|
|
Легко подвергаются гидролизу:
|
|
|
|
|
|
При pН > 8 – щелочная среда:
|
|
Выделенный Н+ при гидролизе коагулянтов связывает бикарбонат в природной воде:
|
|
Таким образом, при гидролизе коагулянтов: Al2(SO4)3 и FeSO4 образуются положительные электроны и между отрицательно заряженными частицами дисперсных примесей воды возникают силы притяжения. Образуются укрупненные агрегаты, которые уже подчиняются силе тяготения. Эти агрегаты оседают или могут быть легко отфильтрованы вследствие своих уже достаточно крупных размеров.
Процесс коагуляции воды при помощи Al2(SO4)3 ведется при рН 5,5–7,5 при дозе 0,5–1,2 ммоль/дм3, а с помощью FeSO4 при рН > 8 при дозе 0,25–1,0 ммоль/дм3 необходимо коагуляцию вести с процессом известкования.
Процесс коагуляции имеет скрытую и явную стадии. На скрытой стадии происходит формирование коллоидных гидрооксидов Al3+ или Fe3+ и образование микрохлопьев. Именно на этой стадии коагуляции вода в основном и очищается от первичных примесей. А затем на второй стадии процесса образуются хлопья (флоккулы) размером 1–3 мм, которые, обладая высокой сорбционной способностью, могут дополнительно извлекать примеси воды.
При организации процесса коагуляции с использованием гидролизующихся коагулянтов необходим учет основных факторов, определяющих оптимальное осуществление технологии. Оптимальная доза коагулянта, т. е. то его минимальное количество, которое обеспечивает максимальное снижение концентрации коллоидных и грубодисперсных примесей в обрабатываемой воде, определяется главным образом качественным и количественным составом коллоидных и растворенных примесей, их физическими и физико-химическими свойствами.
В настоящее время теоретические разработки не дают возможности точного расчетного выбора необходимой дозы коагулянта, что связано, с одной стороны, с отсутствием количественных характеристик различных по составу коллоидных примесей в водах различных типов, с другой – с необходимостью учитывать при расчетах сложность совокупного механизма формирования коагулированной взвеси, когда физические процессы гетерокоагуляции сопровождаются химическими, такими как хемосорбция, образование малорастворимых гидрокомплексов, их полимеризация и кристаллизация, усложняемыми влиянием кинетических факторов. Поэтому оптимальные дозы коагулянта устанавливаются опытным путем для каждого источника водоснабжения в характерные периоды года методом параллельного введения в термостатированные сосуды с определенным объемом воды различных количеств коагулянта с последующей оценкой интенсивности хлопьеобразования, скорости оседания хлопьев и определением остаточных концентраций органических веществ, железо- и кремнесодержащих соединений, ионов алюминия.
Вспомогательные процессы и средства коагуляция обеспечивают интенсификацию и повышение технико-экономической эффективности процесса коагуляции. К их: числу относят флокуляцию – процесс агрегации частиц в котором в дополнение к непосредственному контакту частиц происходит их адсорбционное взаимодействие с молекулами высокомолекулярных веществ, называемых флокулянтами (рис 4.2). При этом ускоряются процессы образования хлопьев и их осаждение, повышается плотность агрегатов, и осадков.
Рис. 4.2. Адсорбция микрочастиц флокулянтами:
а) вытянутая молекула; б) свёрнутая молекула;
1 – адсорбирующая группа; 2 – микрочастица; 3 – внутримолекулярная связь
Флокулянты подразделяются на неорганические и органические, природные и синтетические, на ионогенные и амфотерные. Из неорганических флокулянтов используется активная кремниевая кислота; природными органическими флокулянтами являются крахмал, карбоксиметилцеллюлоза и др. Синтетические флокулянты получили более широкое применение из-за лучших флокуляционных свойств, среди них в основном используется в настоящее время универсальный флокулянт полиакриламид (ПАА):
|
|
Полиакриламид выпускается промышленностью в виде 8-процентного геля, который растворяют в быстроходных мешалках на ВПУ до концентрации 0,1 %. Дозировка флокулянта составляет 0,5–1,5 мг на 100 мг взвешенных веществ в исходной воде. Раствор ПАА вводится через 0,5–2 мин после ввода коагулянта. На рис. 4.3, 4.4 представлены схемы предочистки и осветлителя.
Рис. 4.3. Схема процессов известкования и коагуляции:
1 – исходная вода; 2 – теплообменный подогреватель; 3 – осветлитель; 4 – ввод извести; 5 – ввод коагулянта; 6 – бак осветлённой воды; 7 – перекачивающий насос; 8 – осветлительный фильтр; 9 – на ионитные фильтры или потребление; 10 – сброс осадка с продувочной водой; 11 – греющий пар; 12 – конденсат греющего пара
Рис. 4.4. Схема работы осветлителя:
1 – желоб для сбора осветлённой воды; 2 – воздухоотделитель; 3 – труба отвода осветлённой воды из шламоуплотнителя "отсечка"; 4 – сливочный короб; 5 – выход осветлённой воды; 6 – центральная труба; 7 – шламоотводящая труба; 8 – щелевая переборка; 9, 19 – отбор проб воды; 10 – ввод раствора коагулянта; 11 – труба с водораспределительными соплами; 12 – расвор извести; 13, 18 – дренаж; 14 – периодическая продувка; 16 – сборник шлама; 17 – шламоуплотнитель; 20 – ввод воды в осветлитель; 21 – дренажные решетки; 22 – выходная (цилиндрическая) зона осветлителя; 23 – предохранительная решетка; 24 – ввод флокулянтов; 25 – направляющий кожух; 26 – входная (коническая) зона осветлителя