
- •2010 Кгэу введение в курс «технические средства автоматизации и управления»
- •Лекция №1 Типовые структуры и средства систем автоматизации и управления технологическими процессами. Классы и типовые структуры сАиУ. Основные понятия и определения.
- •Общие сведения
- •Классификация датчиков
- •Основные принципы
- •Примеры и применение
- •Исполнительное устройство
- •Дополнительный блок
- •Противоаварийная защита – паз
- •Методы стандартизации и структура технических средств автоматизации.
- •Структура комплекса асутп.
- •Характеристики элементов регулирования и управления
- •Лекция №3 Комплексы технических средств, программно-технические комплексы. Аппаратно-программные средства распределенных сАиУ.
- •Технические средства верхнего уровня:
- •Контрольно-измерительные средства сАиУ.
- •Лекция №4 Технические средства получения информации о состоянии объекта управления, датчики, измерительные преобразователи. Гсп. Назначение, классификация, принципы построения ип.
- •Государственная система приборов и средств автоматизации промышленного назначения
- •Унификация средств автоматизации.
- •Назначение, классификация, принципы построения ип.
- •Лекция №5 Назначение, основные группы датчиков и физические принципы действия.
- •Классификация датчиков
- •Лекция №6 Методы измерения линейных и угловых перемещений. Датчики скорости (частоты вращения), положения. Датчики линейных перемещений
- •Обзор методов измерения
- •Резистивные чувствительные элементы
- •Индуктивные датчики
- •Емкостные чувствительные элементы
- •Датчики скорости (частоты вращения).
- •Бесконтактные датчики положения механизмов
- •Лекция №7 Средства измерения температуры
- •Методы и технические средства измерения температуры
- •Лекция №8 Средства измерения давления. Измерение механических усилий, давления и разряжения.
- •Особенности эксплуатации приборов для измерения давления
- •Манометр
- •Вакуумметр
- •Лекция №9 Измерение расхода пара, газа и жидкости.
- •Вихреакустические преобразователи
- •Вихревые преобразователи
- •Массовые кориолисовые расходомеры и плотномеры
- •Расходомеры вихревые
- •Расходомеры электромагнитные
- •Метод переменного перепада давления
- •Лекция №10 Уровнемеры. Методы и приборы для измерения уровня.
- •Методы и приборы для измерения уровня что необходимо учитывать при выборе уровнемера?
- •При выборе средств измерений уровня учитывается:
- •Радарный уровнемер
- •Ультразвуковые уровнемеры
- •Волноводный уровнемер
- •Датчики гидростатического давления (уровня)
- •Приборы магнитоэлектрической системы
- •Приборы электромагнитной системы
- •Приборы электродинамической системы
- •Приборы индукционной системы
- •Приборы сравнения. Принцип работы потенциометра
- •Автоматические электрические потенциометры
- •Метод измерения сопротивления
- •Использование электроизмерительных приборов
- •Лекция №12 Оптоволоконные датчики. Интеллектуальные датчики и измерительные преобразователи.
- •Интeллeктyaльныe cpeдcтвa измepeний
- •Исполнительные устройства и механизмы.
- •Лекция №13 Технические средства использования командной информации и воздействия на объект управления. Исполнительные устройства и механизмы.
- •Классификация исполнительных механизмов и регулирующих органов
- •Терминология
- •Лекция №14 Исполнительные механизмы. Классификация и основные характеристики.
- •Исполнительные механизмы (им) классифицируются по следующим признакам:
- •Основные элементы электрических им
- •Эксплуатационные характеристики им:
- •Позиционеры
- •Управление им
- •Типы устройств, рекомендуемых для управления механизмами
- •Лекция №15 Электродвигательные и электромагнитные им.
- •Электромагнитные им.
- •Лекция №16 Регулирующие органы.
- •Регулирующие органы дроссельного типа.
- •Лекция №17 Частотно-регулируемый привод. Проекты асу технологических процессов и установок коммунального хозяйства с применением частотно-регулируемых приводов.
- •Управляющие устройства.
- •Лекция №18 Технические средства обработки, хранения информации и выработки управляющих воздействий Система управления
- •Типы систем автоматического управления
- •Регулятор (теория управления)
- •Лекция №19 Контроллеры и регуляторы
- •Общие сведения
- •Контроллеры.
- •Лекция №20 Программируемые логические контроллеры.
- •Промышленные информационные сети.
- •Лекция №22 Промышленные информационные сети в системах автоматизации и управления технологическими процессами, их назначение и классификация. В качестве введения
- •Фабрика будущего
- •Текущее состояние
- •"Закрытые" и "открытые" системы связи
- •Модель взаимосвязи открытых систем
- •Применение osi-модели в промышленных сетях
- •2. Основные сетевые топологии
- •Структура "звезда"
- •Структура "кольцо"
- •Структура "шина"
- •3. Передача данных
- •Интерфейс rs-232c
- •Интерфейс rs-422
- •Интерфейс rs-485
- •4. Методы доступа к шине
- •Случайный метод доступа к шине (csma/cd)
- •Метод передачи маркера (The Token Passing Method)
- •Метод master-slave
- •5. Основные критерии выбора
- •Лекция №23 Классификация, основные характеристики интерфейсов систем автоматизации и управления. Последовательные и параллельные интерфейсы.
- •6. Промышленные сети
- •1. Циклический трафик.
- •2. Периодический трафик.
- •3. Обслуживание сообщений.
- •Общее заключение
- •Лекция №24 Локальные управляющие вычислительные сети (лувс), технические средства и методы управления доступом к моноканалам лувс Локальные управляющие вычислительные сети
- •Топология сети
- •Сетевая архитектура Ethernet
- •Программное обеспечение сАиУпрограммное обеспечение саиу
- •Лекция №25 Программное обеспечение систем автоматизации и управления.
- •Примеры scаda-систем.
- •Технические характеристики
- •Стоимостные характеристики
- •Эксплуатационные характеристики
- •Требования к системам верхнего уровня
- •Лекция №27 Принципы построения, классификация и технические характеристики; видеотерминальные средства, мнемосхемы, индикаторы; операторские панели и станции, регистрирующие и показывающие приборы
- •Отображение параметров контроля технологического процесса
- •Отображение элементов управления параметрами технологического процесса
Лекция №12 Оптоволоконные датчики. Интеллектуальные датчики и измерительные преобразователи.
Современные оптические сети (Оптоволокно)
Оптоволокно — это стеклянная или пластиковая нить, используемая для переноса света внутри себя посредством полного внутреннего отражения. Волоконная оптика — раздел прикладной науки и машиностроения, описывающий такие волокна. Оптоволокна используются в оптоволоконной связи, которая позволяет передавать цифровую информацию на большие расстояния и с более высокой скоростью передачи данных, чем в электронных средствах связи. В ряде случаев они также используются при создании датчиков.
Простой принцип действия позволяет использовать различные методы, дающие возможность создавать самые разнообразные оптоволокна:
Одномодовые оптоволокна
Мультимодовые оптоволокна
Оптоволокна с градиентным показателем преломления
Оптоволокна со ступенчатым профилем распределения показателей преломления.
Из-за физических свойств оптоволокна необходимы специальные методы для их соединения с оборудованием. Оптоволокна являются базой для различных типов кабелей, в зависимости от того, где они будут использоваться.
Принцип передачи света внутри оптоволокна был впервые продемонстрирован во времена королевы Виктории (1837—1901 гг.), но развитие современных оптоволокон началось в 1950-х годах. Они стали использоваться в связи несколько позже, в 1970-х; с этого момента технический прогресс значительно увеличил диапазон применения и скорость распространения оптоволокон, а также уменьшил стоимость систем оптоволоконной связи.
Применение
Оптоволоконная связь
Оптоволокно может быть использовано как средство для дальней связи и построения компьютерной сети, вследствие своей гибкости, позволяющей даже завязывать кабель в узел. Несмотря на то, что волокна могут быть сделаны из прозрачного пластичного оптоволокна или кварцевого волокна, волокна, использующиеся для передачи информации на большие расстояния, всегда сделаны из кварцевого стекла, из-за низкого оптического ослабления электромагнитного излучения. В связи используются многомодовые и одномодовые оптоволокна; мультимодовое оптоволокно обычно используется на небольших расстояниях (до 500 м), а одномодовое оптоволокно — на длинных дистанциях. Из-за строгого допуска между одномодовым оптоволокном, передатчиком, приемником, усилителем и другими одномодовыми компонентами, их использование обычно дороже, чем применение мультимодовых компонетов.
Оптоволоконный датчик
Оптоволокно может быть использовано как датчик для измерения напряжения, температуры, давления и других параметров. Малый размер и фактическое отсутствие необходимости в электрической энергии, дает оптоволоконным датчикам преимущество перед традиционными электрическими в определенных областях.
Оптоволокно используется в гидрофонах в сейсмических или гидролокационных приборах. Созданы системы с гидрофонами, в которых на волоконный кабель приходится более 100 датчиков. Системы с гидрофоновым датчиком используются в нефтедобывающей промышленности, а также флотом некоторых стран. Немецкая компания Sennheiser разработала лазерный микроскоп, работающий с лазером и оптоволокном[1].
Оптоволоконные датчики, измеряющие температуры и давления, разработаны для измерений в нефтяных скважинах. Оптоволоконные датчики хорошо подходят для такой среды, работая при температурах, слишком высоких для полупроводниковых датчиков (Оптоволоконное измерение температуры).
Разработаны устройства дуговой защиты с волоконно-оптическими датчиками, основными преимуществами которых перед традиционными устройствами дуговой защиты являются: высокое быстродействие, нечувствительность к электромагнитным помехам, гибкость и лёгкость монтажа, диэлектрические свойства.
Другое применение оптоволокна — в качестве датчика в лазерном гироскопе, который используется в Boeing 767 и в некоторых моделях машин (для навигации). Специальные оптические волокна используются в интерферометрических датчиках магнитного поля и электрического тока. Это волокна полученные при вращении заготовки с сильным встроеным двойным лучепреломлением.
Оптоволокно применяется в охранной сигнализации на особо важных объектах (например, ядерное оружие). Когда злоумышленик пытается переместить боеголовку, условия прохождения света через световод изменяются, и срабатывает сигнализация.
Другие применения оптоволокна
Оптоволокна широко используются для освещения. Они используются как световоды в медицинских и других целях, где яркий свет необходимо доставить в труднодоступную зону. В некоторых зданиях оптоволокна используются для обозначения маршрута с крыши в какую-нибудь часть здания. Оптоволоконное освещение также используется в декоративных целях, включая коммерческую рекламу, искусство и искусственные ёлки.
Оптоволокно также используется для формирования изображения. Когерентный пучок, создаваемый оптоволокном, иногда используется совместно с линзами — например, в эндоскопе, который используется для просмотра объектов через маленькое отверстие.