
- •2010 Кгэу введение в курс «технические средства автоматизации и управления»
- •Лекция №1 Типовые структуры и средства систем автоматизации и управления технологическими процессами. Классы и типовые структуры сАиУ. Основные понятия и определения.
- •Общие сведения
- •Классификация датчиков
- •Основные принципы
- •Примеры и применение
- •Исполнительное устройство
- •Дополнительный блок
- •Противоаварийная защита – паз
- •Методы стандартизации и структура технических средств автоматизации.
- •Структура комплекса асутп.
- •Характеристики элементов регулирования и управления
- •Лекция №3 Комплексы технических средств, программно-технические комплексы. Аппаратно-программные средства распределенных сАиУ.
- •Технические средства верхнего уровня:
- •Контрольно-измерительные средства сАиУ.
- •Лекция №4 Технические средства получения информации о состоянии объекта управления, датчики, измерительные преобразователи. Гсп. Назначение, классификация, принципы построения ип.
- •Государственная система приборов и средств автоматизации промышленного назначения
- •Унификация средств автоматизации.
- •Назначение, классификация, принципы построения ип.
- •Лекция №5 Назначение, основные группы датчиков и физические принципы действия.
- •Классификация датчиков
- •Лекция №6 Методы измерения линейных и угловых перемещений. Датчики скорости (частоты вращения), положения. Датчики линейных перемещений
- •Обзор методов измерения
- •Резистивные чувствительные элементы
- •Индуктивные датчики
- •Емкостные чувствительные элементы
- •Датчики скорости (частоты вращения).
- •Бесконтактные датчики положения механизмов
- •Лекция №7 Средства измерения температуры
- •Методы и технические средства измерения температуры
- •Лекция №8 Средства измерения давления. Измерение механических усилий, давления и разряжения.
- •Особенности эксплуатации приборов для измерения давления
- •Манометр
- •Вакуумметр
- •Лекция №9 Измерение расхода пара, газа и жидкости.
- •Вихреакустические преобразователи
- •Вихревые преобразователи
- •Массовые кориолисовые расходомеры и плотномеры
- •Расходомеры вихревые
- •Расходомеры электромагнитные
- •Метод переменного перепада давления
- •Лекция №10 Уровнемеры. Методы и приборы для измерения уровня.
- •Методы и приборы для измерения уровня что необходимо учитывать при выборе уровнемера?
- •При выборе средств измерений уровня учитывается:
- •Радарный уровнемер
- •Ультразвуковые уровнемеры
- •Волноводный уровнемер
- •Датчики гидростатического давления (уровня)
- •Приборы магнитоэлектрической системы
- •Приборы электромагнитной системы
- •Приборы электродинамической системы
- •Приборы индукционной системы
- •Приборы сравнения. Принцип работы потенциометра
- •Автоматические электрические потенциометры
- •Метод измерения сопротивления
- •Использование электроизмерительных приборов
- •Лекция №12 Оптоволоконные датчики. Интеллектуальные датчики и измерительные преобразователи.
- •Интeллeктyaльныe cpeдcтвa измepeний
- •Исполнительные устройства и механизмы.
- •Лекция №13 Технические средства использования командной информации и воздействия на объект управления. Исполнительные устройства и механизмы.
- •Классификация исполнительных механизмов и регулирующих органов
- •Терминология
- •Лекция №14 Исполнительные механизмы. Классификация и основные характеристики.
- •Исполнительные механизмы (им) классифицируются по следующим признакам:
- •Основные элементы электрических им
- •Эксплуатационные характеристики им:
- •Позиционеры
- •Управление им
- •Типы устройств, рекомендуемых для управления механизмами
- •Лекция №15 Электродвигательные и электромагнитные им.
- •Электромагнитные им.
- •Лекция №16 Регулирующие органы.
- •Регулирующие органы дроссельного типа.
- •Лекция №17 Частотно-регулируемый привод. Проекты асу технологических процессов и установок коммунального хозяйства с применением частотно-регулируемых приводов.
- •Управляющие устройства.
- •Лекция №18 Технические средства обработки, хранения информации и выработки управляющих воздействий Система управления
- •Типы систем автоматического управления
- •Регулятор (теория управления)
- •Лекция №19 Контроллеры и регуляторы
- •Общие сведения
- •Контроллеры.
- •Лекция №20 Программируемые логические контроллеры.
- •Промышленные информационные сети.
- •Лекция №22 Промышленные информационные сети в системах автоматизации и управления технологическими процессами, их назначение и классификация. В качестве введения
- •Фабрика будущего
- •Текущее состояние
- •"Закрытые" и "открытые" системы связи
- •Модель взаимосвязи открытых систем
- •Применение osi-модели в промышленных сетях
- •2. Основные сетевые топологии
- •Структура "звезда"
- •Структура "кольцо"
- •Структура "шина"
- •3. Передача данных
- •Интерфейс rs-232c
- •Интерфейс rs-422
- •Интерфейс rs-485
- •4. Методы доступа к шине
- •Случайный метод доступа к шине (csma/cd)
- •Метод передачи маркера (The Token Passing Method)
- •Метод master-slave
- •5. Основные критерии выбора
- •Лекция №23 Классификация, основные характеристики интерфейсов систем автоматизации и управления. Последовательные и параллельные интерфейсы.
- •6. Промышленные сети
- •1. Циклический трафик.
- •2. Периодический трафик.
- •3. Обслуживание сообщений.
- •Общее заключение
- •Лекция №24 Локальные управляющие вычислительные сети (лувс), технические средства и методы управления доступом к моноканалам лувс Локальные управляющие вычислительные сети
- •Топология сети
- •Сетевая архитектура Ethernet
- •Программное обеспечение сАиУпрограммное обеспечение саиу
- •Лекция №25 Программное обеспечение систем автоматизации и управления.
- •Примеры scаda-систем.
- •Технические характеристики
- •Стоимостные характеристики
- •Эксплуатационные характеристики
- •Требования к системам верхнего уровня
- •Лекция №27 Принципы построения, классификация и технические характеристики; видеотерминальные средства, мнемосхемы, индикаторы; операторские панели и станции, регистрирующие и показывающие приборы
- •Отображение параметров контроля технологического процесса
- •Отображение элементов управления параметрами технологического процесса
Автоматические электрические потенциометры
Схема автоматического потенциометра показана на рисунке 1.36, где обозначено: ИПС – источник питания стабилизированный (постоянного тока), Rp – сопротивление реохорда, Rш – шунта (сопротивление для задания пределов измерения прибора), R1, R2, R3 и R4 – сопротивления мостовой схемы, Rб – балластное сопротивление для ограничения тока от ИПС.
Потенциометр состоит из моста сопротивлений АВСD, в одну из диагоналей которого включен источник питания ИПС (диагональ ВС), а в другую (измерительную диагональ АD) измеряемое напряжение Uизм и электродвигатель ЭД с усилителем УЭД. В вершине А моста находится реохорд Rр, к движку которого прикреплена стрелка, движущаяся вдоль шкалы. Перемещением движка в свою очередь управляет электродвигатель.
Мост может находиться в двух состояниях: уравновешенном и неуравновешенном.
Когда мост находится в равновесии, то напряжение между его вершинами AD равно по модулю измеряемому (UAD = Uизм) и напряжение небаланса ΔU, подаваемое на усилитель УЭД, равно нулю:
ΔU = UAD – Uизм = 0.
В данном состоянии ЭД не работает.
Если по каким-либо причинам Uизм изменится, то мост выходит из равновесия и на входе усилителя УЭД появится напряжение небаланса ΔU ≠ 0. Усилитель, усилив напряжение, подает его на ЭД, который, вращаясь, перемещает движок реохорда. Перемещение движка продолжается до тех пор, пока мост снова не придет в равновесие и напряжение на ЭД снова не станет равно нулю.
В этих потенциометрах процесс компенсации осуществляется автоматически, непрерывно и с большой скоростью. Эти приборы имеют устройства для автоматического внесения поправки на температуру окружающей среды.
Метод измерения сопротивления
Для измерения сопротивлений часто используют автоматические электронные мосты, включенные по двухпроводной, трехпроводной или четырехпроводной схемам.
Двухпроводная схема подключения моста к ТС показана на рис. 1.37, где обозначены:
R1, R2, R3, R4 – сопротивления моста;
Rб – балластное сопротивление для ограничения рабочего тока;
Rи – измеряемое сопротивление;
Rл – сопротивление линии (соединительных проводов).
Условием равновесия моста является равенство произведений противолежащих плечей, т.е. в данном случае: R1R3 R2(R4 + Rи + 2Rл).
Когда мост уравновешен, напряжение на диагонали UAD = 0 и, следовательно, ЭД не работает. При изменении Rт изменяется UAD, оно перестает быть нулевым. Это напряжение усиливается УЭД и подается на ЭД, который, вращаясь, перемещает движок реохорда.
Недостатком такой схемы является то, что сопротивления линии входят в одно плечо с Rи, следовательно, если линия достаточно длинная, то изменение Rл (например, при изменении температуры окружающей среды) может вызывать изменение показаний моста. Для компенсации Rл применяются трехпроводная или четырехпроводная схемы.
Использование электроизмерительных приборов
Измерение тока.
При измерении тока используется электроизмерительный прибор амперметр (А), которые должен быть подключен последовательно с элементом, ток в котором замеряется (рис. 1.39).
Амперметр может быть прибором магнитоэлектрической, электромагнитной, электродинамической системы или прибором сравнения. Отличительной особенностью амперметров является их малое внутренне сопротивление, поскольку в противном случае их сопротивление может повлиять на значение измеряемого тока в сторону его уменьшения.
Измерение напряжения.
Измерительным прибором является вольтметр, принцип действия которого аналогичен амперметру. Вольтметр предназначен для измерения разности потенциалов между двумя точками электрической сети, например, на входе и на выходе некоторого элемента Rн, поэтому он подключается параллельно данному элементу (рис. 1.40). Отличительной особенностью является большое внутреннее сопротивление прибора, поскольку ток, протекающий через амперметр, должен быть незначительным и не должен влиять на режим работы измеряемого элемента.
Для уменьшения погрешности необходимо, чтобы сопротивление электроизмерительного прибора было в 100 раз больше сопротивления любого элемента измеряемой цепи. Для этого используется добавочное сопротивление (шунт) Rш, подключаемое последовательно:
,
где Rв – внутреннее сопротивление вольтметра, Umax – максимальное значение измеряемого напряжения, Uв – напряжение непосредственно на вольтметре.
Измерение мощности и электрической энергии.
Для измерения мощности (электроэнергии) используется ваттметр (счетчик электроэнергии), построенный как прибор индукционной системы. Для определения мощности (и электроэнергии) необходимо измерение напряжения U и силы тока I в цепи.
Мощность определяется как произведение
P = U*I,
поэтому данные измерительные приборы имеют две пары контактов
– контакты сверху и снизу прибора, изображенного на рис. 1.41, подключаются к Ш-образному электромагниту и используются для измерения напряжения;
– контакты слева и справа от прибора подключаются к П-образному электромагниту и используются для измерения тока.