
- •10 Класс
- •Часть 1
- •Тема 1. Информация и информационные процессы
- •1.1. Информация и ее виды Объекты окружающего мира
- •Понятие информация
- •Классификация информации
- •1.2. Свойства информации
- •1.3. Информационные процессы
- •1.4. Кодирование информации Язык как знаковая система
- •Кодирование информации
- •Двоичное кодирование
- •Виды сигналов
- •1.5. Единицы измерения информации
- •1.6. Скорость передачи информации
- •1.7. Количество информации Содержательный подход
- •Алфавитный подход
- •1.8. Структурирование информации
- •1.9. Обобщение по теме «Информация и информационные процессы»
- •Тема 2. Арифметические основы вт
- •2.1. Понятие и виды систем счисления
- •Непозиционные системы счисления
- •Позиционные системы счисления
- •Развернутая запись числа
- •2.2. Перевод чисел в позиционных системах счисления Перевод в 10-ю систему счисления из других систем счисления
- •Перевод из 10 системы счисления в другие системы счисления
- •2.4. Арифметические действия в позиционных системах счисления Арифметические операции в двоичной системе счисления
- •Арифметические операции в восьмеричной системе счисления
- •Арифметические операции в шестнадцатеричной системе счисления
- •2.5. Представление числовой информации в памяти пк Прямой код
- •Обратный код
- •Дополнительный код
- •Операция сложения в ок и дк
- •Форматы представления чисел
- •2.6. Представление символьной информации в памяти пк
- •Практическая работа по теме «Представление символьной информации в памяти пк»
- •2.7. Представление графической информации в памяти пк
- •Растровое кодирование изображений
- •2.8. Представление звуковой информации в памяти пк
- •2.9. Обобщение по теме «Арифметические основы вт»
- •Тема 3. Логические основы вт
- •3.1. Основные понятия алгебры логики
- •Логика и компьютер
- •3.2. Логические операции и функции
- •Приоритет логических операций
- •Составление таблиц истинности
- •3.3. Законы алгебры логики
- •3.4. Построение логических схем
- •3.5. Построение логических схем на основе таблиц истинности
- •3.6. Узлы пк
- •Элементы памяти
- •Полусумматор
- •Сумматор
- •3.7. Обобщение по теме «Логические основы вт»
- •Тема 4. Аппаратное обеспечение пк История вычислительной техники Приспособления для счета
- •Поколения эвм
- •4.2. Архитектура эвм
- •Архитектура Джона фон Неймана
- •Принципы Джона фон Неймана
- •Магистрально-модульный принцип построения пк
- •4.3. Процессор
- •Арифметико-логическое устройство (алу)
- •Устройство управления (уу)
- •Микропроцессорная память (мпп)
- •Характеристики процессора
- •4.4. Внутренняя память
- •Характеристики памяти
- •Свойства внутренней памяти
- •4.5. Внешняя память
- •4.6. Устройства ввода-вывода
- •4.7. Обобщение темы «Аппаратное обеспечение пк»
3.6. Узлы пк
В 1938 году выдающийся американский математик и инженер Клод Шеннон обнаружил, что алгебра логики применима к любым переменным, которые могут иметь только два значения.
Элементы памяти
Триггер — класс электронных устройств, обладающих способностью длительно находиться в одном из двух устойчивых состояний и чередовать их под воздействием внешних сигналов. Каждое состояние триггера легко распознается по значению выходного напряжения. По характеру действия триггеры относятся к импульсным устройствам — их активные элементы (транзисторы, лампы) работают в ключевом режиме, а смена состояний длится очень короткое время (10–9 с).
Триггер хранит (помнит) один разряд числа, записанного в двоичном коде.
При изготовлении триггеров применяются преимущественно полупроводниковые приборы (обычно биполярные и полевые транзисторы), в прошлом — электромагнитные реле, электронные лампы. В настоящее время логические схемы, в том числе с использованием триггеров, создают в интегрированных средах разработки под различные программируемые логические интегральные схемы (ПЛИС). Используются, в основном, в вычислительной технике для организации компонентов вычислительных систем: регистров, счетчиков, процессоров, ОЗУ (оперативной памяти).
Разрывные характеристики электронных ламп, на которых основано действие триггеров, впервые под названием «катодное реле» были описаны М. А. Бонч-Бруевичем в 1918 г.
Триггер — это устройство последовательного типа с двумя устойчивыми состояниями равновесия, предназначенное для записи и хранения информации.
Триггер — это элементарная ячейка памяти.
Термин триггер происходит от английского слова «trigger» — защелка, спусковой крючок. Для обозначения этой схемы в английском языке чаще употребляется термин «flip-flop», обозначающий «щелчок-хлопок».
Самый распространенный тип триггера — так называемый RS-триггер (S и R, соответственно, от английских Set — установка, и Reset — сброс). Рассмотрим принцип работы RS-триггера на примере схемы на элементах ИЛИ-НЕ.
|
|
|
Условное графическое обозначение RS-триггера |
Логическая схема RS-триггера на элементах ИЛИ-НЕ |
Логическая схема RS-триггера на элементах И-НЕ |
Физически
такой триггер имеет два входа — S
и R,
а также два выхода — Q
и
.
Выходы всегда имеют противоположные
значения. Фактически результатом
является независимая величина Q.
S |
R |
Q |
|
Режим |
Анализируя таблицу истинности для RS-триггера, обнаружилось противоречие: в последней строке значения Q и оказались равными, вместо того чтобы быть противоположными. Поэтому на входы RS-триггера запрещается одновременно подавать значения S = 1 и R = 1. |
0 |
0 |
|
|
|
|
0 |
1 |
|
|
|
|
1 |
0 |
|
|
|
|
1 |
1 |
|
|
|
Поскольку триггер запоминает 1 бит, память ПК представляет собой батареи таких триггеров.
Задание 13. Сколько триггеров необходимо для хранения 1 байта, 1 Кбайта, 1 Мбайта?
................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................