
- •Материаловедение
- •Введение
- •1. Кристаллическое строение металлов
- •1.1. Общая характеристика и структурные методы исследования металлов
- •1.2. Атомно-кристаллическая структура металлов
- •1.3. Дефекты кристаллического строения
- •1.4. Строение сплавов
- •2. Кристаллизация металлов
- •3. Деформация и разрушение металлов
- •3.1. Упругая и пластическая деформация
- •3.2. Механизм пластической деформации
- •3.3. Влияние пластической деформации на структуру и свойства металла
- •3.4. Разрушение металлов
- •4. Влияние нагрева на структуру и свойства деформированного металла
- •4.1. Возврат и полигонизация
- •4.2. Рекристаллизация
- •4.3. Факторы, влияющие на размер зерна рекристаллизованного металла
- •4.4. Холодная и горячая деформации
- •5. Железо-углеродистые сплавы
- •5.1. Компоненты и фазы в системе железо-углерод
- •5.2. Диаграмма состояния железо-цементит (Fe–Fe3c) (метастабильное равновесие)
- •5.3. Формирование структуры углеродистых сталей при медленном охлаждении
- •5.4. Формирование структуры белых чугунов
- •6. Чугуны
- •6.1. Белые чугуны
- •6.2. Серые чугуны
- •6.3. Высокопрочные чугуны
- •6.4. Ковкие чугуны
- •7. Стали
- •7.1. Примеси в сталях
- •7.2. Влияние углерода на свойства стали
- •7.3. Влияние постоянных примесей на свойства стали
- •7.4. Влияние легирующих элементов на критические точки железа
- •7.5. Классификация сталей
- •7.6. Маркировка сталей
- •7.7. Коррозионно-стойкие и жаростойкие стали и сплавы
- •7.8. Жаропрочные стали и сплавы
- •8. Термическая обработка сталей
- •8.1. Отжиг стали
- •8.2. Нормализация стали
- •8.3. Закалка стали
- •8.4. Отпуск стали
- •9. Химико-термическая обработка стали
- •9.1. Цементация стали
- •9.2. Азотирование стали
- •9.3. Нитроцементация и цианирование сталей
- •9.4. Диффузионная металлизация
- •10. Огнеупорные материалы
- •10.1. Свойства огнеупоров
- •10.2. Классификация огнеупоров
- •10.3. Огнеупорные изделия
- •10.4. Огнеупорные бетоны, торкрет-массы, мертели
- •11. Теплоизоляционные материалы
- •11.1. Свойства теплоизоляционных материалов
- •11.2. Классификация теплоизоляционных материалов
- •11.3. Естественные теплоизоляционные материалы
- •11.4. Искусственные теплоизоляционные материалы
- •Библиографический список
- •Оглавление
3.3. Влияние пластической деформации на структуру и свойства металла
Пластическая деформация вызывает в металле структурные изменения трёх видов:
1) изменяются форма и размеры зёрен. До деформации металл имеет равноосную структуру. В процессе деформации зёрна вытягиваются вдоль плоскостей скольжения и структура становится волокнистой (рис. 3.7.) Кроме того, при большой степени деформации происходит дробление зёрен;
До деформации После пластической деформации
Рис. 3.7. Схема изменения формы и размеров зёрен при пластической деформации
2) после значительной деформации возникает преимущественная пространственная ориентация зёрен, которая называется текстурой деформации (рис. 3.8). Характер текстуры зависит от природы металла и вида деформации [1]. Текстуру не следует отожествлять с волокнистой структурой. Волокнистость иногда может и не сопровождаться текстурой. Образование текстуры способствует появлению анизотропии металла;
Рис. 3.8. Схема влияния деформации прокаткой на структуру
поликристаллического металла: зёрна вытягиваются вдоль
направления прокатки и возникает текстура (стрелки соответствуют
одному и тому же кристаллографическому направлению)
3) происходят изменения в субструктуре. Одновременно с изменением формы зерна происходит формирование субзёрен и увеличение угла разориентировки между ними. Возрастает плотность дислокаций до 109 …1012 см–2.
С увеличением степени холодной деформации прочностные характеристики увеличиваются, а пластичность уменьшается. Это явление называют наклёпом или нагартовкой. Упрочнение металла при пластической деформации объясняется увеличением количества дефектов кристаллического строения. Повышение плотности дефектов кристаллического строения затрудняет движение новых дислокаций, в результате чего повышается сопротивление деформации и уменьшается пластичность металла. Металлы с ГЦК решёткой упрочняются сильнее, чем металлы с ОЦК решёткой.
3.4. Разрушение металлов
Разрушение – это процесс зарождения и развития в металле трещин, приводящий к разделению его на части.
Разрушение может быть хрупким или вязким. Механизм зарождения трещин одинаков при хрупком и вязком разрушении. Чаще всего микротрещина возникает из-за скопления дислокаций перед препятствием (границы зёрен, всевозможные включения и т.д.).
При своем росте трещина окаймлена узкой зоной пластической деформации. На создание этой зоны затрачивается дополнительная энергия (рис. 3.9).
Рис. 3.9. Схема образования трещин
Вязкое и хрупкое разрушение различаются между собой размерами этой зоны. При вязком разрушении размеры этой зоны больше и на её образование затрачивается много энергии. Поэтому скорость распространения трещины небольшая. При хрупком разрушении зона пластической деформации небольшая и скорость распространения трещины достигает 2500 м/с. Поэтому хрупкое разрушение называют «внезапным» или «катастрофическим» разрушением.
С точки зрения микроструктуры разрушение может быть транскристаллитное и интеркристаллитное. При транскристаллитном разрушении трещина распространяется по телу зерна, а при интеркристаллитном она происходит по границам зёрен. При распространении трещины по телу зерна может происходить как вязкое, так и хрупкое разрушение. Межзеренное разрушение всегда является хрупким [2]. Хрупкое и вязкое разрушения имеют различные изломы. После хрупкого разрушения излом кристаллический блестящий. Вязкое разрушение, как было отмечено выше, происходит после значительной пластической деформации, которая искажает форму зерен. Поэтому излом – волокнистый матовый.
Хрупкому разрушению способствуют следующие основные факторы: 1) понижение температуры; 2) повышение скорости деформации; 3) концентраторы напряжений; 4) структурные факторы (размер зерна, выделение хрупких фаз по границам зёрен и т.д.); 5) повышение прочности, как правило, увеличивает склонность к хрупкому разрушению; 6) размеры изделия, чем они больше, тем больше вероятность хрупкого разрушения.
Понижение температуры обуславливает переход от вязкого к хрупкому разрушению. Это явление называется хладноломкостью. Интервал температур, в котором происходит переход от вязкого разрушения к хрупкому, называют порогом хладноломкости.
Для определения порога хладноломкости проводят сериальные испытания на ударную вязкость. Температура, при которой работают изделия из металлов, должна значительно превышать порог хладноломкости.