
- •Материаловедение
- •Введение
- •1. Кристаллическое строение металлов
- •1.1. Общая характеристика и структурные методы исследования металлов
- •1.2. Атомно-кристаллическая структура металлов
- •1.3. Дефекты кристаллического строения
- •1.4. Строение сплавов
- •2. Кристаллизация металлов
- •3. Деформация и разрушение металлов
- •3.1. Упругая и пластическая деформация
- •3.2. Механизм пластической деформации
- •3.3. Влияние пластической деформации на структуру и свойства металла
- •3.4. Разрушение металлов
- •4. Влияние нагрева на структуру и свойства деформированного металла
- •4.1. Возврат и полигонизация
- •4.2. Рекристаллизация
- •4.3. Факторы, влияющие на размер зерна рекристаллизованного металла
- •4.4. Холодная и горячая деформации
- •5. Железо-углеродистые сплавы
- •5.1. Компоненты и фазы в системе железо-углерод
- •5.2. Диаграмма состояния железо-цементит (Fe–Fe3c) (метастабильное равновесие)
- •5.3. Формирование структуры углеродистых сталей при медленном охлаждении
- •5.4. Формирование структуры белых чугунов
- •6. Чугуны
- •6.1. Белые чугуны
- •6.2. Серые чугуны
- •6.3. Высокопрочные чугуны
- •6.4. Ковкие чугуны
- •7. Стали
- •7.1. Примеси в сталях
- •7.2. Влияние углерода на свойства стали
- •7.3. Влияние постоянных примесей на свойства стали
- •7.4. Влияние легирующих элементов на критические точки железа
- •7.5. Классификация сталей
- •7.6. Маркировка сталей
- •7.7. Коррозионно-стойкие и жаростойкие стали и сплавы
- •7.8. Жаропрочные стали и сплавы
- •8. Термическая обработка сталей
- •8.1. Отжиг стали
- •8.2. Нормализация стали
- •8.3. Закалка стали
- •8.4. Отпуск стали
- •9. Химико-термическая обработка стали
- •9.1. Цементация стали
- •9.2. Азотирование стали
- •9.3. Нитроцементация и цианирование сталей
- •9.4. Диффузионная металлизация
- •10. Огнеупорные материалы
- •10.1. Свойства огнеупоров
- •10.2. Классификация огнеупоров
- •10.3. Огнеупорные изделия
- •10.4. Огнеупорные бетоны, торкрет-массы, мертели
- •11. Теплоизоляционные материалы
- •11.1. Свойства теплоизоляционных материалов
- •11.2. Классификация теплоизоляционных материалов
- •11.3. Естественные теплоизоляционные материалы
- •11.4. Искусственные теплоизоляционные материалы
- •Библиографический список
- •Оглавление
9. Химико-термическая обработка стали
Химико-термической обработкой называют технологические процессы, при которых происходит диффузионное насыщение поверхностного слоя деталей различными элементами. Целью химико-термической обработки является повышение твердости, износоустойчивости, жаростойкости или коррозионной стойкости.
Химико-термическая обработка протекает в три стадии.
На первой стадии происходят химические реакции в исходной (окружающей) среде. В результате образуются диффундирующие элементы в атомарном состоянии.
На второй стадии эти элементы усваиваются поверхностью металла в процессе адсорбции или хемосорбции.
Третья стадия связана с диффузионным проникновением элемента вглубь насыщаемого металла.
В результате химико-термической обработки образуется диффузионный слой, который по химическому составу, структуре и свойствам отличается от исходного металла [3].
В промышленности наибольшее распространение получили процессы диффузионного насыщения из активных жидких и газовых сред. Предпочтительной является газовая среда.
Наиболее распространенными видами химико-термической обработки стали являются: цементация, азотирование, нитроцементация (цианирование) и диффузионная металлизация.
9.1. Цементация стали
Цементацией (науглероживанием) называют такой вид химико-термической обработки, при котором происходит насыщение поверхностного слоя стали углеродом при нагреве в специальной среде – карбюризаторе.
Цементацию проводят при температурах 930…950 С, то есть выше точки АС3. Аустенит устойчив при данных температурах и может растворять углерод в большом количестве.
Целью цементации с последующей закалкой и низким отпуском является получение твердой и износостойкой поверхности. Цементации подвергают низкоуглеродистые стали, содержащие 0,1…0,25 % С. После обработки поверхностные слои содержат 0,8…1 % С, а сердцевина изделий остается вязкой. На цементацию детали поступают после механической обработки.
Стальные изделия цементируют различными методами. При цементации в твердом карбюризаторе источником углерода являются древесный уголь, каменноугольный полукокс или торфяной кокс. Для ускорения цементации добавляют активизаторы: углекислый барий (BaCO3) и кальцинированную соду (Na2CO3).
Детали помещают в железные ящики, засыпают их карбюризатором и накрывают крышкой. Затем ящики помещают в печь и выдерживают 5…10 часов при температуре 930…950 С. Глубина цементации зависит от времени и температуры выдержки деталей. Она обычно составляет 0,5…3 мм. После цементации ящики охлаждают на воздухе до 400…500 С, а потом открывают.
Газовую цементацию осуществляют нагревом изделий в среде газов, содержащих углерод. В качестве карбюризатора чаще всего используют эндотермическую атмосферу с добавкой природного газа, а также жидкие углеводороды (керосин, уайт-спирит и др.). Газовую цементацию производят в герметически закрытых печах при температуре 900…950 С.
Преимуществами газовой цементации являются: возможность получить заданную концентрацию углерода в слое, уменьшить длительность обработки [4].
Окончательные свойства изделия, прошедшего цементацию, получают путем термической обработки. После цементации детали подвергают закалке (однократной или двойной) и низкому отпуску. Термическая обработка повышает твердость и износостойкость поверхностных слоев, исправляет структуру и измельчает зерно как сердцевины, так и цементованного слоя, так как зерно вырастает при длительной выдержке стали в области высоких температур.