
- •Материаловедение
- •Введение
- •1. Кристаллическое строение металлов
- •1.1. Общая характеристика и структурные методы исследования металлов
- •1.2. Атомно-кристаллическая структура металлов
- •1.3. Дефекты кристаллического строения
- •1.4. Строение сплавов
- •2. Кристаллизация металлов
- •3. Деформация и разрушение металлов
- •3.1. Упругая и пластическая деформация
- •3.2. Механизм пластической деформации
- •3.3. Влияние пластической деформации на структуру и свойства металла
- •3.4. Разрушение металлов
- •4. Влияние нагрева на структуру и свойства деформированного металла
- •4.1. Возврат и полигонизация
- •4.2. Рекристаллизация
- •4.3. Факторы, влияющие на размер зерна рекристаллизованного металла
- •4.4. Холодная и горячая деформации
- •5. Железо-углеродистые сплавы
- •5.1. Компоненты и фазы в системе железо-углерод
- •5.2. Диаграмма состояния железо-цементит (Fe–Fe3c) (метастабильное равновесие)
- •5.3. Формирование структуры углеродистых сталей при медленном охлаждении
- •5.4. Формирование структуры белых чугунов
- •6. Чугуны
- •6.1. Белые чугуны
- •6.2. Серые чугуны
- •6.3. Высокопрочные чугуны
- •6.4. Ковкие чугуны
- •7. Стали
- •7.1. Примеси в сталях
- •7.2. Влияние углерода на свойства стали
- •7.3. Влияние постоянных примесей на свойства стали
- •7.4. Влияние легирующих элементов на критические точки железа
- •7.5. Классификация сталей
- •7.6. Маркировка сталей
- •7.7. Коррозионно-стойкие и жаростойкие стали и сплавы
- •7.8. Жаропрочные стали и сплавы
- •8. Термическая обработка сталей
- •8.1. Отжиг стали
- •8.2. Нормализация стали
- •8.3. Закалка стали
- •8.4. Отпуск стали
- •9. Химико-термическая обработка стали
- •9.1. Цементация стали
- •9.2. Азотирование стали
- •9.3. Нитроцементация и цианирование сталей
- •9.4. Диффузионная металлизация
- •10. Огнеупорные материалы
- •10.1. Свойства огнеупоров
- •10.2. Классификация огнеупоров
- •10.3. Огнеупорные изделия
- •10.4. Огнеупорные бетоны, торкрет-массы, мертели
- •11. Теплоизоляционные материалы
- •11.1. Свойства теплоизоляционных материалов
- •11.2. Классификация теплоизоляционных материалов
- •11.3. Естественные теплоизоляционные материалы
- •11.4. Искусственные теплоизоляционные материалы
- •Библиографический список
- •Оглавление
7.7. Коррозионно-стойкие и жаростойкие стали и сплавы
Коррозия – это разрушение металла под действием окружающей среды. При коррозии металлы покрываются ржавчиной. Коррозия ухудшает механические свойства металла.
Различают химическую и электрохимическую коррозию. Химическая коррозия происходит при воздействии на металл газов и неэлектролитов (нефть и ее производные). Электрохимическая коррозия протекает под действием электролитов (кислот, щелочей, солей). К электрохимической коррозии относят почвенную и атмосферную коррозию.
Стали, устойчивые к газовой коррозии при температурах выше 550 С, называют окалиностойкими или жаростойкими. Стали, устойчивые к электрохимической коррозии, называют коррозионно-стойкими или нержавеющими.
Чтобы повысить жаростойкость стали, в нее добавляют хром, алюминий или кремний. Эти элементы образуют на поверхности защитные плотные пленки оксидов (Cr, Fe)2O3, (Al, Fe)2O3, которые затрудняют диффузию кислорода.
Повышение окалиностойкости до700…750 С можно достичь введением в сталь 5…8 % Cr. При содержании хрома в стали до 15…17 % жаростойкость стали возрастает до 950…1000 С, а при содержании хрома 25 % жаростойкость увеличивается до1100 С.
Если в качестве легирующих элементов в сталь добавить 25 % Cr и 5 % Al, то жаростойкость возрастает до 1300 С.
Жаростойкость зависит от состава стали. Структура стали не влияет на жаростойкость. Поэтому жаростойкость ферритных и аустенитных сталей с одинаковым количеством хрома будет одна и та же.
В высокотемпературных установках, таких как котельные агрегаты, печи и газовые турбины, применяют аустенитные стали (36Х18Н25С2, 20Х23Н13, 12Х25Н16Г7АР и др.) и ферритные (15Х25Т, 12Х17 и др.) [2].
7.8. Жаропрочные стали и сплавы
Жаропрочными называют такие стали и сплавы, которые могут определенное время работать под нагрузкой при высоких температурах и при этом обладать жаростойкостью.
В теплоэнергетике жаропрочные стали используют для изготовления деталей газовых и паровых турбин, элементов котельных агрегатов и т.п.
С повышением температуры стали уменьшаются предел текучести, временное сопротивление, модуль упругости и возникает ползучесть.
Ползучесть – медленное нарастание при высоких температурах пластической деформации при постоянно действующих напряжениях, меньших предела текучести. Ползучесть приводит к разрушению металла.
Сопротивление металла ползучести и разрушению при высоких температурах и длительном воздействии нагрузки называют жаропрочностью. Жаропрочность оценивается условным пределом ползучести и пределом длительной прочности.
Рабочие температуры жаропрочных сплавов находятся в пределах (0,45…0,8)Тпл, где Тпл – температура плавления, К.
При высоких температурах деформация и разрушение обычно происходят по границам зерен, так как на границах зерен больше дефектов кристаллического строения (вакансий, дислокаций и т.д.).
Жаропрочность стали во многом зависит от величины межатомных связей и структуры. Чем выше температура плавления металла, тем сильнее межатомные связи и выше жаропрочность.
Жаропрочность повышают легированием. В результате увеличивается энергия связи между атомами и процессы диффузии задерживаются, а температура рекристаллизации повышается.
Жаропрочные сплавы, работающие при температурах до 700…900 С, изготавливают на основе железа, никеля и кобальта, а сплавы, работающие при температуре 1200…1500 С, – на основе молибдена и ряда других тугоплавких металлов.
В котлостроении широко используют перлитные стали. Они предназначены для длительной эксплуатации при температурах 450…580 С. Перлитные жаропрочные стали являются низкоуглеродистыми. Они содержат от 0,08 до 0,15 % С, иногда до 0,2…0,3 %. Содержание легирующих элементов, основными из которых являются хром, молибден и ванадий, не превышает 2…3 % (12Х1МФ, 25Х2М1Ф).
Стали, содержащие 0,12… 0,15 % С, используют для изготовления труб пароперегревателей, паропроводов и других элементов паросиловых установок, температура эксплуатации которых не превышает 570…580 С. Перлитные стали с содержанием углерода 0,25…0,30 % по жаропрочности уступают перлитным сталям с содержанием углерода 0,12…0,15 % и их эксплуатируют при температурах 525…565 С. Из них изготавливают роторы паровых турбин. Перлитные стали находят широкое применение благодаря невысокой стоимости, технологичности и удовлетворительной жаропрочности.
Для изделий, работающих при температурах 450…600 С, применяют мартенситные стали. От перлитных сталей они отличаются повышенной стойкостью к окислению в атмосфере пара или продуктов сгорания топлива. Мартенситные стали содержат 0,35…0,45 % С, 9…10 % Cr, 2…3 % Si (40Х10С2М, 11Х11Н2В2МФ).
Для изготовления дисков, лопаток и других элементов газовых турбин используют стали мартенситно-ферритного класса, которые могут работать при температурах 600…650 С. Это высоколегированные стали, которые содержат 11…12 % хрома и небольшое количество молибдена, вольфрама, ванадия (11Х11МФ, 11Х12ВНМФ, 15Х11МФ, 18Х11МФБ).
Для изготовления различных деталей газовых турбин, работающих в интервале температур 600…700 С, а при умеренных напряжениях – до 800…850 С, применяют аустенитные стали. Эти стали по жаропрочности превосходят перлитные и мартенситные стали. Основные легирующие элементы в этих сталях – хром и никель. Иногда никель заменяют другими аустенитообразующими элементами – марганцем или азотом. Содержание углерода в этих сталях 0,1…0,4 % (10Х11Н20Т3Р, 12Х18Н10Т, 40Х15Н7Г7Ф2МС).
Детали паровых и газовых турбин, работающих при температурах 500…750 С, изготавливают из жаропрочных сплавов на железоникелевой основе. Структура этих сплавов – твердый раствор хрома и других легирующих элементов в железоникелевой основе (ХН35ВТЮ) [4].
Для изготовления рабочих лопаток, турбинных дисков и других деталей теплоэнергетического оборудования, работающих при температуре до 850 С, применяют жаропрочные стали на основе никеля. Их называют нимониками. Для повышения окалиностойкости никель легируют хромом в количестве (20 %), а для увеличения жаропрочности – титаном (1,0…2,8 %) и алюминием (0,55…5,5 %). К числу таких сплавов относятся: ХН77ТЮР, ХН70ВТЮ, ХН65ВМТЮ.