
- •Микроскопический анализ постоянного микропрепарата «Клетки эпителия кожи лягушки»
- •Микроскопический анализ постоянного микоопрепарота «Клетки крови человека»
- •Учебные цели:
- •Контроль исходного уровня знаний и умений.
- •Разбор с преподавателем узловых вопросов, необходимых для освоения темы занятия.
- •Эритроциты человека в изо-, гушо- и гипертонических растворах
- •Учебные цели:
- •Содержание занятия:
- •Контроль исходного уровня знаний и умений.
- •Разбор с преподавателем узловых вопросов, необходимых для освоения темы занятия.
- •Органоиды, участвующие в синтезе веществ
- •Органоиды с защитной и пищеварительной функцией
- •Органоиды, участвующие в энергообеспечении клетки
- •4. Органоиды, участвующие в делении и движении клеток
- •Клеточный центр в делящихся клетках лошадиной аскариды
- •3. Митохондрии в клетках печени
- •Лизосомы
- •Вид занятия: лабораторно-практическое.
- •Амитоз (прямое деление) р. Клетках г.Ечеии мыши
- •Пяазмолемма.
- •Учебные цели:
- •Контроль исходного уровня знаний и умений.
- •Разбор с преподавателем узловых вопросов, необходимых для освоения темы занятия.
- •Учебные цели:
- •Контроль исходного уровня знаний и умений.
- •Разбор с преподавателем узловых вопросов, необходимых для освоения темы занятия.
- •Сперматозоиды млекопитающего
- •Яйцеклетка крольчихи
- •Синкорион у аскариды
- •Раздел 2. Цитогенетика
- •Учебные цели:
- •Контроль исходного уровня знаний и умений. *
- •Учебные цели:
- •Контроль исходного уровня знаний и умений
- •Учебные цели:
- •Контроль исходного уровня знаний и умений.
- •Разбор с преподавателем узловых вопросов, необходимых для освоения темы занятия.
- •Контроль исходного уровня знаний и умений.
- •Разбор с преподавателем узловых вопросов, необходимых для освоения темы занятия.
- •Тема: Человек как объект генетики. Методы медицинской генетики: генеалогический, близнецовый
- •Контроль исходного уровня знаний и умений.
- •Разбор с преподавателем узловых вопросов, необходимых для освоения темы занятия.
- •Контроль исходного уровня знаний и умений.
- •Разбор с преподавателем узловых вопросов, необходимых для освоения темы занятия.
- •Цитогенетический метод в исследовании генетики человека
- •Проведение дактилоскопического анализа
- •Экспресс-метод исследования X-полового хроматина в ядрах эпителия слизистой оболочки полости рта
- •Вопросы для самоподготовки к освоению данной темы:
- •Содержания занятия:
- •Контроль исходного уровня знаний и умений.
- •Разбор с преподавателем узловых вопросов, необходимых для освоения темы занятия.
- •Популяционно-статистический метод.
- •Молекулярно-генетический метод.
- •Практическая работа
- •Наблюдаемые частоты генотипов и аллелей
- •Лабораторная работа №3 Молекулярно-генетический метод: модулировоние ттцр-анализа при муковисцидозе (мутация - делеция р508)
- •Биохимический метод в исследовании генетики человека
Органоиды, участвующие в синтезе веществ
В любой клетке совершается синтез свойственных ей веществ, являющихся либо строительным материалом для новообразующихся структур взамен изношенных, либо ферментами, участвующими в биохимических реакциях, либо секретами, выделяемыми из клеток желез.
Исходными продуктами для синтеза служат вещества, образующиеся при распаде клеточных структур, но, главным образом, поглощаемые клеткой извне. При этом те из них, которые представляют собой цельные молекулы белков, жиров и углеводов, предварительно адсорбированные на поверхности клетки и поступившие в цитоплазму, расщепляются с помощью ферментов на составные части. Активная роль в синтезе клеточных веществ принадлежит эндоплазматической сети и рибосомам.
Эндоплазматическая сеть
Эндоплазматическая сеть впервые была обнаружена американским ученым Портером в 1945 г. при электронной микроскопии культур клеток соединительной ткани - фибробластов - и названа эндоплазматической сетью, или ретикулумом. Различают две разновидности эндоплазматической сети: гладкую (агранулярную) и шероховатую (гранулярную). Обе они образованы цистернами или каналами, которые ограничены мембраной, толщиной 6-7 нм. На наружной поверхности мембраны шероховатой эндо-плазматической сети имеются рибонуклеопротеидные гранулы - рибосомы, отсутствующие на поверхности мембран гладкой сети. Оба типа эндоплазма -тической сети обычно находятся в непосредственной структурной взаимосвязи вследствие прямого перехода мембран эндоплазматической сети одного типа в мембраны эндоплазматической сети другого типа, а содержимое каналов и цистерн этих разновидностей ЭПС не разграничено специальными структурами. Тем не менее, обе разновидности ЭПС представляют собой дифференцированные специфические внутриклеточные органоиды метаболического аппарата, органоиды, специализированные на реализацию разных функций. Каждому типу клеток свойственны определенная архитектоника и разновидность эндоплазматической сети.
Строение гладкой эндоплазматической сети. Она представлена канальцами диаметром 50-100 нм, которые на ультратонких срезах выглядят в виде парных мембран (трубочек) или мешочков. Мембраны гладкой цитоплазматической сети имеют много общего с остальными клеточными мембранами. В основе их строения лежит липопротеидный комплекс со значительным содержанием липидов (до 50%), Толщина каждой мембраны около 6-7 нм. Агранулярная зндоплазматическая сеть постоянно присутствует в | клетках печени, клубочковой и пучковой зонах надпочечников, а также в !сердечньгх миоцитах и мышечных волокнах скелетной мускулатуры. Агранулярная сеть, как правило, определяется в местах скопления гликогена или липидных включений.
Функцию эндоплазматической сети гладкого типа- связывают, главным образом, с углеводным и жировым обменом. Считают, что она участвует в синтезе липидов и расщеплении гликогена, предохраняя при этом образующуюся глюкозу от действия гликолитических ферментов.
Наконец, все более очевидной становится значение гладкой эндоплазматической сети, как системы внутриклеточного проведения импульсов, в частности, в мышечных волокнах, где она лежит вдоль сократимых нитей - миофибрилл. Гладкая эндоплаз матическая сеть может транспортировать и накапливать ионы, осуществлять функцию детоксикации вредных продуктов обмена. В поперечно-полосатой мышечной ткани гладкая ЭПС играет роль резервуара ионов кальция, а ее мембраны содержат мощные кальциевые насосы, которые в сотые доли секунды могут выбрасывать большие количества ионов в цитоплазму или, наоборот, транспортировать их в полость этих каналов. ЭПС в клетках надпочечников специализирована на синтез предшественников стероидных гормонов.
' Строение эндоппазматической сети гранулярного типа. Состоит из разветвленной системы канальцев или плоских мешочков, ограниченных липопротеидными мембранами, на поверхности которых расположены рибосомы. >>
Она обнаружена почти во всех клетках, но наиболее сильно развита в клетках с высоким уровнем белкового обмена, например, в клетках эндокринной части, поджелудочной железы, печени, слюнных желез, нейронах центральной нервной системы, цитоплазматических клетках и т. д. Так, в секреторных клетках, синтезирующих белки на экспорт, гранулярная ЭПС занимает основную часть цитоплазмы.
Во всех перечисленных клетках цитоплазма интенсивно окрашивается основными красителями, т. е. является резко базофильной, Это объясняется наличием в цитоплазме большого количества рибосом.
Функцию эндоплазматической сети гранулярного типа, прежде всего, связываютют с обеспечением синтеза белка, трансмембранного транспорта и начальной пострансляционной обработкой белков, синтезируемых на прикрепленных рибосомах. Доказано, что на поверхности гранулярноой ЭПС, под влиянием входящих в нее ферментов, осуществляется синтез ряда веществ белковой природы, экспортируемых (т. е. выделяемых) клетками в виде секретов, гормонов, ферментов, иммунных тел и др.
комплекс, носивший долгое время имя Гольджи.
Серьезный вклад в понимание значения пластинчатого комплекса внес советский ученый цитолог Д.Н. Насонов (1930), установивший существенную роль этой органеллы в процессах секреции.
Строение пластинчатого комплекса. По данным световой микроскопии пластинчатый комплекс представлен сетчатымй, зернистыми или неправильной формы структурами, импрегнирующимися солями серебра и осмия. В живой клетке пластинчатый комплекс располагается около ядра. Форма пластинчатого комплекса варьирует в зависимости от функционального состояния клетки.
В основе строения пластинчатого комплекса, как и в основе строения большинства клеточных органелл, лежат липопротеидные мембраны, толщиной 60-70А. Данные электронной микроскопии показали, что пластинчатый комплекс является неоднородным образованием. Центральной, наиболее типичной и постоянной структурой аппарата Гольджи является система уплощенных цистерн, составляющих стопку или колонку прилегающих друг к другу овальных или округлых образований (диктиосома). В периферической части цистерн (в типичных случаях) формируется вакуолярная часть комплекса Гольджи, состоящая из ограниченных мембраной пузырьков разных размеров.
В более сложных вариантах организации комплекса Гольджи на периферии цистерн развивается сложная система ограниченных мембранами трубчатых переплетающихся структур, от которых отшнуровываются периферические пузырьки и вакуоли.
В периферическом цитозоле аппарата Гольджи имеются скопления полирибосом. Показано, что они синтезируют ряд ферментов, специфических для мембран аппарата Гольджи. Характерна тесная пространственная связь с мембранами эндоплазматической сети и ядерной оболочкой. Некоторые авторы обнаружили непосредственный переход канальцев гранулярной ЭПС в пластинчатый комплекс. ?
Функции пластинчатого комплекса длительное время сводили к участию в оформлении секреторных гранул, в секреции и транспорте. Комплекс Гольджи является упаковочным «цехом» в клетке, конденсационной мембраной, концентрируя в виде капель или гранул вещества, вырабатываемые на других органоидах клетки. Однако в последнее время установлено, что он выполняет и ряд других функций; в нем происходит дегидратация белковых продуктов секреторных гранул, сегрегация (укрупнение) белковых молекул, синтез сложных углеводов-гликопротеи-дов, комплексы соединений с жирами
гликолипидов, мукополисахаридов, присоединение остатков серной кислоты к углеводным полимерам, образование комплексных соединений типа зрелых молекул иммуноглобулинов.
Полагают, что пластинчатый комплекс дает начало мелким пузырькам, которые играют роль транспортных структур, связывающих пластинчатый комплекс с цитоплазматическим ретикулумом и клеточной оболочкой. Считают также, что он принимает участие в образовании первичных лизосом с их своеобразными мембранами и сложной структурной организацией гидролаз. Комплекс Гольджи участвует в формировании акросомы сперматозоида. Из цистерн аппарата Гольджи, так же как из ЭПС, могут возникать и пероксисомы.
Биогенез пластинчатого комплекса. Согласно существующим предположениям пластинчатый комплекс может возникать различными путями: 1 - вследствие фрагментации (деления) его элементов, 2 - из мембран гранулярной эндоплазматической сети, 3 - из микропузырьков, образующихся на внешней поверхности ядерной оболочки, 4 - может образоваться с!е поуо.
Микротцубочки
Впервые их наблюдали в аксоплазме, выдавленной из миелинизированных нервных волокон. Для цитоплазматических микротрубочек характерны постоянные размеры и удивительная прямолинейность. Их диаметр около 24 нм, длина несколько микрон. На поперечном срезе они имеют вид кольца. Эта конфигурация образуется плотной стенкой и светлым центральным участком.
Стенка микротрубочки состоит из отдельных линейных или спиральных нитчатых структур диаметром около 5 нм, которые, в свою очередь состоят из субъединиц. На поперечном срезе микротрубочки насчитывается около 13 субъединиц. Обычно внутри микротрубочек нет электронно-плотных масс, поэтому они выглядят «пустыми». Однако иногда в центральной части некоторых микротрубочек обнаруживаются плотные точки или палочки.
Функции микротрубочек. В ресничках, жгутиках, митотическом веретене и в цитоплазме простейших, способных к сокращению клеточного тела функции микротрубочек связаны с сокращением.
Микротрубочки содержат около 10% белка веретена: именно они обуславливают двойное лучепреломление веретена и лучей заезды. Во время цитокенеза в перемычке, соединяющей две дочерние клетки (и содержащей, многочисленные микротрубочки), наблюдаются перистальтические волны.
< Микротрубочкам приписывают роль каркаса (цитоскелета), функция которого состоит в создании и поддержании формы клетки, а также в перераспределении ее содержимого.
Внутриклеточная циркуляция и транспорт Микротрубочки, по-видимому, выполняют также функции микроциркулярной системы, обеспечивающей транспорт небольших молекул внутри клетки. Для этого они образуют и отграничивают в цитоплазме своего рода каналы.
Микротрубочки могут играть определенную роль в локальных изменениях формы клетки, которые происходят при,клеточной дифференцировке в ходе эмбрионального развития. Резко выраженное удлинение ядра еперматиды
сопровождается возникновением строго упорядоченных по их расположению микротрубочек, которые охватывают ядро в направлении, перпендикулярном его оси; эти микротрубочки образуют вокруг ядра двойную спираль.