
- •Introduction
- •Laboratory Work 1 computing of polynomial value according to the horner’s method
- •For mating variants:
- •Laboratory Work 2 primitive operations with matrices
- •In the first case the result will be the vector –column with the elements
- •Laboratory Work 3 solution of the systems of linear equations with real coefficients
- •Table 3.1 Scheme Parametres
- •Laboratory Work 4 solution of the linear equation systems with the complex coefficients
- •If such a programme is available to compute the value of the variable
- •Laboratory Work 5 matrix inversion
- •The matrix
- •Laboratory Work 6 matrix determinant computation
- •Laboratory Work 7 matrix inversion
- •The equation
- •Laboratory Work 8
- •Laboratory Work 9 Refinement of the roots of transcendental and algebraic equations
- •Iterations are stopped if the condition
- •Laboratory Work 10 solution of the non-linear equation systems
- •If the initial approximations of the roots are
- •The iterations are stopped if the condition
- •Laboratory work 11 numerical soultion of linear differential equations
- •Laboratory Work 12 іinterpolation
- •Laboratory Work 13 approximation done by the least-squares method
- •Laboratory Work 14 numerical integration
- •Laboratory Work 15 harmonic analysis and synthesis of the periodical functions
- •Laboratory Work 16
- •References
- •Contents
Laboratory Work 15 harmonic analysis and synthesis of the periodical functions
Purpose of work: to learn to determine the periodical function harmonic composition.
15.1 Theoretical Data
The time function f(t) is called periodical if for it the condition
(15.1)
Where Т - period
Is equitable.
The periodic function harmonic analysis consists in determination of the coefficients ak , bk of the Fourier series:
(15.2)
Where
the
first harmonic circular frequency;
k – the harmonic serial number
Being limited by some final number of harmonics m in the formula (15.2) the approximating harmonic polynomial Qm(t) is obtained :
(15.4)
The Fourier coefficients are determined by the expressions
(15.5)
Using the rectangle method for the numerical integration of the formulae (15.5) when the integration interval [0,T] is split into n equal sections we get::
(15.6)
k=1,2,…,m,
(15.7)
(15.8)
(15.9)
Under
n=2k (15.10)
the function Qm(t) becomes the trigonometric interpolator.
Getting of the periodical function by summing up its harmonic components according to the formula (15.4).is called the harmonic synthesis
15.2 Task
Compute the coefficients of the interpolating trigonometric polynomial that approximate the table function given in the points
When
Build the interpolating function graph and plot the output tabel function in the form of the grid.
15.3 Methodical Recommendations
For vizualisation the integrity of the points on the approximation function graph is to be 5-10 times as much of the integrity of the points which split the period into the sections for numerical integration.
Observe the influence of the number of the harmonics m under the given number of the layout sections on the approximation accuracy..
Таблиця 15.1 – Вихідні дані до лабораторної роботи №15
Variant number |
Function table values |
1 |
2 |
1 |
1.00,1.803, 3.085,4.776,6.434,7.347,7.027,5.652,3.897,2.381, 1.347, 7.422, 0.419, 0.256, 0.176, 0.142, 0.136, 0.155, 0.209, 0.324, 0.554 |
2 |
7.38, 6.76, 5.22, 3.47, 2.07, 1.16, 0.64, 0.36, 0.23, 0.16, 0.13, 0.13, 0.16, 0.23, 0.37, 0.64, 1.16, 2.08, 3.48, 5.22, 6.76 |
3 |
-1.24, -1.17, -1.08, -0.96, -0.84, -0.79, -0.8, -0.9, -1.1, -1.21, -1.02, -1.28, -1.32, -1.34, -1.36, -1.37, -1.37, -1.36, -1.35, -1.33, -1.30 |
4 |
-3.0, -3.58, -4.12, -4.56, -4.86, -4.99, -4.94, -4.73, -4.36, -3.86, -3.30, -2.7, -2.13, -1.64, -1.26, -1.05, -1.00, -1.13, -1.43, -1.87, -2.43 |
5 |
1.0,1.05, 90.6, 520.4, 1714.7, 2915.0, 2439.2, 1020.6,230.7, 32.17, 3.29, 0.3, 0.03, 0.004, 0.001, 0.0003,0.0006, 0.002, 0.01, 0.09, 0.9 |
6 |
2980.1, 2089.3, 742.4, 146.6, 18.6, 1.8, 0.16, 0.02, 0.003, 0.001, 0.001,0.001,0.002,0.003, 0.018, 0.9, 1.22, 18.6, 146.6, 742.5, 2089.7 |
7 |
1.0, 1.34, 1.75, 2.18, 2.53, 2.71, 2.65, 2.37, 1.97, 1.54, 1.16, 0.86, 0.64, 0.5, 0.42, 0.37, 0.36, 0.39, 0.45, 0.56, 0.74 |
8 |
2.71, 2.6, 2.28, 1.86, 1.44, 1.07, 0.8, 0.46, 0.42, 0.4, 0.37, 0.37, 0.4, 0.48, 0.6, 0.8, 1.07, 1.44, 1.86, 2.28, 2.6 |
9 |
-1.32,-1.28,-1.26,-1.24, -1.25, -1.25, -1.25, -1.26, -1.27, -1.29, -1.29, -1.33, -1.34, -1.37, -1.37, -1.37, -1.37, -1.36, -1.36, -1.35, -1.34
|
Continuation of the table 15.1 |
|
1 |
2 |
10 |
-4.0, -4.2, -4.5, -4.7, -4.9, -5.0, -4.9, -4.8, -4.6, -4.4, -4.1, -3.8, -3.5, -3.1, -3.0, -3.0, -3.0, -3.1, -3.2, -3.4, -3.7 |
11 |
1.0, 2.4, 5.4, 10.4, 16.3, 19.9, 18.6, 13.4, 7.7, 3.6, 1.6, 0.64, 0.27, 0.13, 0.07, 0.05, 0.05, 0.06, 0.09, 0.18, 0.4 |
12 |
20.0, 17.5, 11.9, 6.4, 2.9, 1.2, 0.5, 0.2, 0.1, 0.06, 0.05, 0.05, 0.06, 0.1, 0.5, 1.0, 1.2, 2.9, 6.4, 11.9, 17.5 |
13 |
-1.1, -0.8, -0.3, 0.3, 0.7, 0.8, 0.7, 0.5, 0.04, -0.6, -0.9, 1.1, -1.27, -1.32, -1.35,-1.37, -1.37, -1.36, -1.34, -1.3, -1.2 |
14 |
-2.0, -2.8, -3.7, -4.3, -4.7, -4.9, -4.9, -4.5, -4.1, -3.3, -2.4, -1.5, -0.6, -0.04, 0.6, 0.02, 0.99, 0.79, 0.34, 0.3, -1.1 |
15 |
1.1, 3.2, 9.5, 22.8, 41.4, 53.9, 49.4, 31.9, 15.2, 5.7, 1.8, 0.55, 0.17, 0.06, 0.03, 0.02, 0.01, 0.02, 0.04, 0.1, 0.3 |
16 |
-0.78, -1.22, -1.34, -1.39, -1.42, -1.43, -1.42, -1.41, -1.37, -1.3, -1.1, -0.1, 1.1, 1.2, 1.33, 1.36, 1.37, 1.35, 1.3, 1.17, 0.65 |
17 |
54.5, 45.7, 27.2, 12.1, 4.3, 1.3, 0.4, 0.13, 0.05, 0.03, 0.02, 0.02, 0.03, 0.05, 0.13, 0.41, 1.3, 4.3, 12.1, 21.2, 45.7 |
18 |
-0.78, 0.18, 0.89, 1.13, 1.21, 1.24, 1.23, 1.18, 1.04,0.63, -0.38, -1.01, -1.22, -1.3, -1.35, -1.36, -1.37, -1.36, -1.33, -1.27, -1.1 |
19 |
-1.0, -2.1, 3.2, -4.1, -4.7, -4.9, -4.8, -4.4, -3.7, -2.7, -1.6, -0.4, 0.7, 1.7, 2.4, 2.9, 3.0, 2.7, 2.1, 1.2, 0.2 |
20 |
1.0 , 4.36, 16.7, 49.8, 105. 0, 146. 3, 130. 9, 75.9, 30.0,8.75, 2.1, 0.47, 0.11, 0.03, 0.01, 0.007, 0.006, 0.009, 0.02, 0.05, 0.2 |
21 |
148.4, 118.8, 62.6, 25.5, 6.21, 1.45, 0.33, 0.08, 0.02,0.01, 0.007,0.007, 0.01, 0.02, 0.08, 0.32, 1.45, 6.2, 22.6, 62.2, 119.0 |
22 |
0.0, 0.97, 1.23, 1.32, 1.36, 1.37, 1.36, 1.34, 1.28, 1.130.64, -0.64, -1.13, -1.28, -1.34, -1.37, -1.36, -1.32, -1.23, -0.9, -0.2 |
23 |
-0.0001, -1.47, -2.8, -3.9, -4.65, -4.98, -4.87, -4.33, -3.4, -2.16, -0.74, 0.74, 2.17, 3.14, 4.33, 4.87, 4.98, 4.65, 3.9, 2.8, 1.4 |
24 |
1.0,5.8, 29.3, 108.9, 266.4, 396.7, 347.1, 180.5, 59.2, 13.5, 2.4, 0.4, 0.07, 0.01, 0.005, 0.003, 0.002, 0.004, 0.009, 0.03, 0.1 |
25 |
403.4, 309.0, 142.2, 42.1, 8.9, 1.56, 0.26, 0.05, 0.01, 0.0044, 0.0026, 0.0026, 0.0044,0.01, 0.05, 0.263, 1.56, 8.95, 42.1, 142.2, 309.9 |
26
|
0.78, 1.22, 1.34, 1.39, 1.42, 1.43, 1.42, 1.41, 1.37, 1.3, 1.1, 0.1, -1.1, -1.2, -1.33, -1.36, -1.37, -1.35, -1.3, 1.17, -0.65 |
27 |
1.0, -0.77, -2.3, -3.6, -4.6, -4.9, -4.8, -4.1, -3.1, -1.6, 0.1, 1.9, 3.6, 5.1, 6.2, 6.84, 6.98, 6.58, 5.69, 4.4 , 2.7 |
28 |
1.0 , 7.8, 51.5, 238.1, 675.9, 1075.4, 620.1, 429.3, 110.8, 20.8, 2.83, 0.35, 0.04, 0.01, 0.002, 0.001, 0.001, 0.001,0.004, 0.02, 0.12 |
Continuation of the table 15.1 |
|
1 |
2 |
29 |
1.10, 1.32, 1.40, 1.43, 1.45, 1.46, 1.46, 1.44, 1.42, 1.37, 1.25, 0.76, -0.8, -1.22, -1.33, -1.36, -1.37, -1.35, -1.29, -1.1, -0.1 |
30 |
2.0 , -0.06, -1.9, -3.4, -4.9, -4.8, 4.0, -2.7, -1.1, 0.95, 3.0, 5.0, 6.7, 8.1, 8.8, 8.9, 8.5, 7.47, 5.94, 4.06 |