
- •1 Планові геодезичні мережі 8
- •2 Створення планових геодезичних мереж методом тріангуляції 24
- •3 Створення планових геодезичних 87
- •1 Планові геодезичні мережі
- •1.1 Основні положення створення планових геодезичних мереж України
- •1.1.1 Методи побудови планових геодезичних мереж
- •1.1.2 Схема планових мереж, побудованих згідно з “Основними положеннями 1954–1961 рр.”
- •1.1.3 Характеристика сучасної планової геодезичної мережі України
- •1.1.3.1 Щільність геодезичних пунктів
- •1.1.3.2 Характеристика астрономо-геодезичної мережі 1 класу
- •1.1.3.3 Основні вимоги до побудови геодезичної мережі 2 класу
- •1.1.3.4 Основні вимоги до побудови геодезичної мережі 3 класу
- •1.1.4 Характеристика сучасних планових мереж згущення
- •2 Створення планових геодезичних мереж методом тріангуляції
- •2.1 Проектні роботи
- •2.1.1 Проектування тріангуляційних мереж на топографічній карті
- •2.1.2 Розрахунок висот зовнішніх знаків
- •2.1.2.1 Теоретичне обґрунтування розрахунку висот знаків
- •2.1.2.2 Коректування висот знаків за правилом коромисла
- •2.1.2.3 Графічний розрахунок висот знаків
- •2.1.3 Оцінка проектів тріангуляційних мереж
- •2.1.3.1 Суть та призначення оцінки проектів тріангуляційних мереж
- •2.1.3.2 Вставка в трикутник вищого класу
- •2.1.3.3 Оцінка запроектованого ряду
- •2.2 Рекогностування пунктів тріангуляції
- •2.3 Закладання центрів та будівництво зовнішніх знаків
- •2.3.1 Закладання центрів
- •2.3.2 Будівництво зовнішніх знаків
- •2.3.3 Зовнішнє оформлення пунктів
- •2.4 Кутові спостереження на пунктах тріангуляції і їх попередня обробка
- •2.4.1 Поняття про спосіб вимірювання кутів у всіх комбінаціях
- •2.4.2 Спосіб кругових заходів
- •2.4.2.1 Кількість заходів вимірювання напрямків
- •2.4.2.2 Величина, на яку переставляється лімб між заходами
- •2.4.2.3 Приведення приладів в робоче положення
- •2.4.2.4 Методика наведення теодоліта на візирну ціль і взяття відліків
- •2.4.2.5 Методика вимірювання напрямків
- •2.4.3 Поняття про видозмінений спосіб вимірювання кутів у всіх комбінаціях
- •2.4.4 Поняття про спосіб неповних заходів
- •2.4.5 Приведення результатів кутових вимірів до центрів пунктів
- •2.4.5.1 Елементи центрування і редукції
- •2.4.5.2 Обчислення поправок у виміряні напрямки за центрування
- •2.4.5.3 Обчислення поправок у виміряні напрямки за редукцію
- •2.4.5.4 Визначення елементів приведення
- •Центрувальний лист №5
- •2.4.5.5 Нестандартні випадки при визначенні елементів приведення
- •2.4.6 Помилки кутових вимірів у тріангуляції
- •2.4.6.1 Особисті помилки
- •2.4.6.2 Помилки приладів
- •2.4.6.3 Помилки впливу зовнішнього середовища
- •2.4.7 Спостереження орієнтирних пунктів
- •2.4.8 Попередня обробка кутових спостережень в тріангуляції
- •2.4.8.1 Перевірка журналів кутових вимірів і центрувальних листів
- •2.5 Вимірювання зенітних відстаней на пунктах тріангуляції і їх попередня обробка
- •2.5.1 Суть і призначення тригонометричного нівелювання
- •2.5.2 Вимірювання зенітних відстаней z
- •2.5.2.1 Найбільш вигідний час для вимірювання зенітних відстаней z
- •2.5.2.2 Методика вимірювання зенітної віддалі на візирну ціль
- •2.5.2.3 Обробка результатів спостережень
- •2.5.3 Визначення поправки за вплив кривини Землі і вертикальної рефракції
- •2.5.4 Визначення довжин сторін
- •2.5.5 Визначення висот приладів і візирних цілей
- •2.5.6 Точність тригонометричного нівелювання
- •2.5.7 Двостороннє тригонометричне нівелювання.
- •2.5.8 Попередня обробка результатів тригонометричного нівелювання тріангуляційних пунктів
- •3 Створення планових геодезичних мереж методом полігонометрії
- •3.1 Проектування полігонометричних мереж
- •3.1.1 Складання проекту на топографічній карті
- •3.1.2 Оцінка проектів окремих полігонометричних ходів
- •3.1.2.1 Загальні питання оцінки проектів. Видовжені і зігнуті ходи
- •3.1.2.2 Критерії зігнутості полігонометричних ходів
- •3.1.2.3 Оцінка проектів видовжених ходів
- •3.1.2.4 Оцінка проектів зігнутих полігонометричних ходів
- •3.2 Рекогностування полігонометричних ходів
- •3.3 Виготовлення і закладання центрів
- •3.4 Кутові вимірювання в полігонометричних ходах
- •3.4.1 Способи кутових вимірювань
- •3.4.2 Кількість заходів вимірювання кутів
- •3.4.3 Підготовка до вимірів
- •3.4.4 Спосіб окремого кута
- •3.4.5 Вимірювання напрямків способом кругових заходів
- •3.4.6 Помилки кутових вимірів у полігонометрії
- •3.4.6.1 Обґрунтування необхідної точності кутових вимірів у полігонометрії
- •3.4.6.2 Джерела помилок кутових вимірів. Обґрунтування величини впливу одного джерела помилок
- •3.4.6.3 Аналіз впливу окремих джерел на точність кутових вимірів
- •3.5 Вимірювання сторін в полігонометричних ходах
- •3.6 Прив’язка полігонометричних мереж до пунктів державної геодезичної мережі
- •3.7 Попередня обробка результатів польових спостережень
- •3.7.1 Перевірка та обробка польових журналів
- •3.7.2 Обчислення ліній, приведених на рівень моря і на площину в проекції Гаусса-Крюгера
- •3.7.3 Складання робочої схеми полігонометриного ходу
- •3.7.4 Обчислення кутової нев’язки ходу та порівняння її з допустимими значеннями
- •3.7.5 Обчислення нев’язок в приростках координат fx та fy, абсолютної fабс та відносної fвідн неяв’язок в ході і порівняння їх з допустимими значеннями
- •3.7.6 Визначення поздовжнього і поперечного зміщень полігонометричного ходу
- •3.7.7 Оцінка точності кутових вимірів
- •3.7.8 Оцінка точності лінійних вимірів
- •Перелік рекомендованих джерел
3.5 Вимірювання сторін в полігонометричних ходах
У практиці прокладання полігонометричних ходів на різних етапах розвитку геодезії застосовувалися різні методи вимірювання ліній, основою яких було використання:
підвісних мірних приладів;
базисних жезлів;
оптичних віддалемірів;
радіовіддалемірів;
світловіддалемірів або електронних тахеометрів.
Перші чотири групи приладів відіграли в свій час важливу роль при виконанні лінійних вимірів. На сучасному етапі їх використання в полігонометрії, зокрема при створенні мереж згущення (4 класу, 1 і 2 розряду), можливе (при забезпеченні необхідної точності вимірювання ліній) [1], але недоцільне.
Геодезичне виробництво сьогодні забезпечене достатньою кількістю сучасних світловіддалемірів та електронних тахеометрів, які є основними засобами при лінійних вимірах полігонометрії.
Світловіддалеміри та електронні тахеометри — це прилади, в яких вимірювання віддалей здійснюється за допомогою світлових сигналів. Електронними тахеометрами, крім того, вимірюють горизонтальні і вертикальні кути або зенітні віддалі.
Детально світловіддалеміри, електронні тахеометри та методика вимірювання відстаней ними вивчаються в курсах “Геодезичні прилади” та “Електрооптичні та радіогеодезичні вимірювання”.
Тут ми лише коротко зупинимося на питаннях їх точності, в зв’язку з використанням їх у полігонометрії 4 класу, 1 і 2 розрядів.
Згідно з інструкцією [1], при вимірюванні сторін полігонометричних ходів 4 класу, 1 і 2 розрядів треба дотримуватися таких вимог (див. табл. 3.1):
середня квадратична помилка вимірювання довжини сторони
до 500 м — 10 мм,
від 500 до 1000 м — 20 мм,
понад 1000 м — 25 мм·S км.
Вказаної точності можна досягнути при використанні тих чи інших типів світловіддалемірів чи електронних тахеометрів.
Інструкція [1] рекомендує для вимірювання сторін використовувати сучасні світловіддалеміри типів СТ5, 2СТ10, електронні тахеометри Та3М, ТС1010 (Lejca), Elta 50.
Це не виключає можливості використання найсучасніших електронних тахеометрів, які з’явилися в останні роки на світовому ринку, зокрема SOKKIΛ та інші.
Слід відмітити також, що на виробництві сьогодні використовують також інші типи приладів, які були випущені в попередні роки різними фірмами, зокрема, світловіддалеміри: ЕОК 2000, СМ5, 2СМ2, 3СМ2, електронні тахеометри Та5, Та3 (“Агат”), ЕОТ 2000, RECOTA та інші.
Кожен з названих приладів знаходить своє використання в залежності від його далекосяжності та точності вимірів відстаней.
У більшості світловіддалемірів (ТА3М, ТС1010, Elta 50, RECOTA та інших) середня квадратична помилка вимірювання відстаней залежить від довжини ліній і виражається формулою
|
|
(3.53) |
де a і b — постійні величини для даного типу світлрвіддалеміра.
У деяких світловіддалемірів (СМ5, ЕОК 2000), тахеометрів (Та5, ЕОТ 2000) ця помилка від відстані не залежить і виражається величиною
|
|
(3.54) |
де const — постійна величина для даного типу приладу.
У табл 3.7 наведені технічні характеристики деяких типів світловіддалемірів та електронних тахеометрів, які застосовуються в геодезичному виробництві.
Таблиця 3.7 - Технічні характеристики світловіддалемірів та електронних тахеометрів
Тип приладу |
Країна, що випустила прилад |
Далекосяжність, м |
Середня квадратична помилка вимірювання відстані |
Світловіддалеміри |
|||
СТ5 |
Росія |
5000 |
|
2СТ10 |
Росія |
10000 |
|
ЕОК 2000 |
НДР |
2500 |
|
СМ5 |
СРСР |
500 |
|
2СМ2 |
СРСР |
5000 |
|
3СМ2 |
СРСР |
5000 |
|
Електронні тахеометри |
|||
ТаЗМ |
Росія |
2500 |
|
ТС1010 “Leica” |
Німеччина |
2000 |
|
Elta 50 |
НДР |
800 |
|
Та3 “Агат” |
СРСР |
5000 |
|
Та5 |
СРСР |
2000 |
|
ЕОТ 2000 |
НДР |
2000 |
|
RECOTA |
НДР |
3000 |
|
Дані табл. 3.7 використовуються при виборі типу світловіддалеміра для забезпечення далекосяжності та необхідної точності вимірювання ліній в запроектованих полігонометричних ходах.