Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция 2. Кодирование информации.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
104.96 Кб
Скачать

Восьмеричная система счисления

 

Для более удобного представления двоичных данных также используется система счисления с основанием восемь (восьмеричная система счисления). В восьмеричной системе счисления используется восемь цифр: 0,1,2,3,4,5,6,7.

  

Шестнадцатеричная система счисления

 

Для "стенографического" представления двоичных чисел используется система счисления с основанием 16 (шестнадцатеричная система счисления). В шестнадцатеричной системе счисления используется шестнадцать цифр: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.

Перевод целых чисел из одной системы счисления в другую

 

Примем без доказательства следующие правила перевода целых чисел из одной системы счисления в другую.

Правило 1. Перевод числа x из системы счисления основанием P в систему счисления с основанием Q заключается в последовательном нахождении остатков от деления числа x на основание Q, при этом процесс продолжается до тех пор, пока частное от деления не будет меньше основания Q. Все вычисления выполняются в системе счисления с основанием P, т.е. основание Q должно также быть выражено в системе счисления с основанием P. Остатки от деления должны быть выражены цифрами системы счисления с основанием R. Представление искомого числа в системе счисления с основанием R получается выписыванием последнего частного и остатков от деления в обратном порядке.

На практике такой порядок перевода чисел используется при переводе из десятичной системы счисления в восьмеричную, шестнадцатеричную и двоичную.

57410=?8=10768 574 8

56 71 8

14 67 8 8

8 7 8 1

6 0

57410=?16=23Е16

574 16

48 35 16

94 32 2

80 3

14

Правило 2. Перевод числа x из системы счисления основанием P в систему счисления с основанием Q осуществляется путем представления числа х по степеням основания P. Все вычисления выполняются в системе счисления с основанием Q, т. е. основание P и цифры исходного числа должны также быть выражены в системе счисления с основанием Q. На практике такой порядок перевода чисел используется при переводе из двоичной, восьмеричной и шестнадцатеричной системы счисления в десятичную.

 

23Е16 =?10: = 2*162+3*161+ Е*160=2*162+3*161+14*160=57410

10788=1*83+0*82+7*81+6*80=57410