- •3. Колебания и волны
- •Свободные колебания
- •1. Введение
- •2. Описание свободного процесса в контуре
- •3. Экспериментальная установка
- •4. Программа работы
- •4.1. Измерения
- •4.2. Обработка результатов
- •Вынужденые колебания
- •1. Теоретические соотношения
- •1.1. Уравнение процесса в последовательном контуре
- •1.2. Установившееся решение
- •1.3. Амплитудно-частотная и фазовая характеристики
- •1.4. Полоса пропускания контура. Добротность
- •1.5. Резонанс
- •2. Измерение фазовых сдвигов
- •3. Экспериментальная установка
- •4. Программа работы
- •4.1. Снятие амплитудно-частотных характеристик
- •4.2. Снятие фазо-частотной характеристики
- •4.3. Обработка и представление результатов
- •Релаксационные колебания
- •1. Принцип возбуждения релаксационных колебаний
- •1.1. Релаксационные колебания
- •1.2. Релаксационный генератор
- •1.3. Вольт-амперная характеристика газоразрядной лампы
- •1.4. Газоразрядная лампа
- •1.5. Условие возбуждения релаксационных колебаний
- •2. Экспериментальная установка
- •3. Измерения
- •3.1. Снятие вольт-амперной характеристики
- •3.2. Измерения параметров релаксационных колебаний
- •4. Представление результатов
- •Волны в двухпроводной линии
- •1. Теория
- •1.1. Цепи с сосредоточенными
- •1.2. Двухпроводная линия и её эквивалентная схема
- •1.3. Телеграфные уравнения
- •1.4. Решение телеграфных уравнений для линии без потерь
- •1.5. Вторичные параметры линии без потерь
- •1.5.1. Волновое сопротивление
- •1.5.2. Входное сопротивление
- •1.5.3. Коэффициент отражения
- •1.5.4. Волновое число и фазовая скорость
- •1.6. Режимы работы линии без потерь
- •1.6.1. Режим бегущих волн
- •1.6.2. Режим стоячих волн
- •1.6.3. Режим смешанных волн
- •1.7. Коэффициент стоячей волны
- •2. Эксперимент
- •2.1. Предварительные расчёты
- •2.2. Задачи эксперимента
- •2.3. Экспериментальная установка
- •2.4. Измерения
- •2.5. Обработка и представление результатов
- •Сложение колебаний
- •1. Теория
- •1.1. Сложение однонаправленных
- •1.2. Биения
- •1.3. Сложение взаимно перпендикулярных колебаний
- •1.4. Фигуры Лиссажу
- •1.5. Определение скорости звука в воздухе
- •2. Эксперимент
- •2.1. Лабораторная установка
- •2.2. Измерения
- •2.2.1. Сложение однонаправленных колебаний
- •2.2.2. Наблюдение биений
- •2.2.3. Наблюдение эллипсов
- •2.2.4. Наблюдение фигур Лиссажу
- •2.2.5. Определение скорости звука в воздухе
- •2.3. Представление результатов
- •4. Электротехнические устройства
- •Трансформатор
- •1. Назначение, устройство
- •1.1. Назначение
- •1.2. Устройство трансформатора
- •1 .3. Принцип действия трансформатора
- •2 . Режимы работы трансформатора
- •2.1. Режим холостого хода
- •2.2. Режим нагрузки
- •2.3. Нагрузочная характеристика трансформатора
- •2.4. Потери мощности и кпд трансформатора
- •3. Специальные трансформаторы
- •3.1. Автотрансформатор
- •3.2. Трансформатор тока
- •4. Экспериментальное исследование трансформатора
- •4.1. Объект исследования и приборы
- •4.2. Опасности в работе
- •4.3. Программа работы
- •4.3.1. Общая постановка задачи
- •4.3.2. Прозванивание обмоток
- •4.3.3. Нахождение сетевой обмотки 220 в
- •4.3.4. Измерение напряжений на вторичных обмотках
- •4.3.5. Снятие нагрузочной характеристики
- •4.3.6. Измерение кпд трансформатора
- •4.4. Представление результатов
- •Выпрямители
- •1. Основные понятия
- •1.1. Вольт-амперная характеристика р-п перехода
- •1.2. Параметры полупроводниковых диодов
- •1.3. Параметры выпрямителей
- •1.4. Схемы простейших выпрямителей
- •1.4.1. Однополупериодный выпрямитель
- •1.4.2. Мостовой выпрямитель
- •1.4.3. Мостовой выпрямитель со сглаживающим фильтром
- •2 Эксперимент и расчёты
- •2.1. Экспериментальная установка
- •2.2. Снятие вольт-амперной характеристики диода
- •2.3. Измерения в однополупериодном выпрямителе
- •2.4. Измерения в мостовом выпрямителе
- •2.5. Графики и расчёты
- •Трёхфазная цепь
- •1. Элементы теоРии трёхфазных цепей
- •1.1. Понятие трёхфазной цепи
- •1.2. Получение трёхфазной системы эдс
- •1.3. Соединения генератора с нагрузкой
- •Грамма фазных и линейных напряжений при соединении звездой
- •1.4. Нарушения в нулевом проводе
- •1.5. Соединение фаз нагрузки звездой без нулевого провода
- •1.6. Выпрямление трёхфазного напряжения
- •2. Лабораторная установка
- •3. Программа измерениЙ
- •3.1. Предварительные измерения
- •3.2. Симметричная нагрузка
- •3.3. Несимметричные нагрузки
- •3.4. Обрыв нулевого провода
- •3.5. Измерения параметров пульсирующего напряжения
- •4. Обработка и представление результатов
- •Машина постоянного напряжения
- •1. Назначение, принцип работы и устройство
- •1.1. Назначение
- •1.2. Генератор синусоидального напряжения
- •1.3. Генератор постоянного (пульсирующего) напряжения
- •1.4. Мотор постоянного напряжения
- •2. Элементы теории машин постоянного напряжения
- •2.1. Генератор
- •2.2. Мотор
- •3. Лабораторная установка
- •4. Измерения
- •4.1. Снятие характеристик генератора
- •4.2. Снятие характеристик мотора
- •5. Обработка и представление результатов
- •Литература
- •Физический практикум по электромагнетизму
- •400131, Волгоград, просп. Им. В. И. Ленина, 28.
- •400131, Волгоград, ул. Советская, 35.
1.2. Устройство трансформатора
Конструктивно трансформатор представляет собою две или несколько обмоток, насаженных на замкнутый магнитопровод (сердечник) из магнитомягкого ферромагнитного материала: какой-либо электротехнической стали или пермаллоя – сплава с малой коэрцитивной силой Нс~10…100 А/м. Обмотки навиваются на каркас медным проводом. Одна из обмоток является первичной, на неё поступает входное напряжение и1(t). Вторичных обмоток, откуда снимаются выходные напряжения, может быть одна или несколько. Все обмотки тщательно изолируются как от магнитопровода, так и друг от друга.
Использование магнитопровода преследует две цели: 1) уменьшить рассеяние магнитного потока Ф почти до нуля, так как почти все линии поля В (индукции) направляются по магнитопроводу; 2) сделать индуктивное сопротивление катушек ωL≫r их активного сопротивления, что уменьшает тепловые потери в трансформаторе ΔР=I2r, так что КПД даже маломощных трансформаторов достигает 90%, а мощных – 98-99%.
М
агнитопровод
делается не цельным, а набирается из
листов железа (или пермаллоя) толщиной
обычно 0,35 мм, которые изолируются друг
от друга слоем лака (он также может
навиваться из железной ленты). Такая
конструкция позволяет уменьшить тепловые
потери в магнитопроводе, так как
уменьшаются контуры развития вихревых
токов: оно
циркулируют уже не по всему сечению
магнитопровода, а лишь по сечениям
отдельных листов (рис. 1), что резко
увеличивает сопротивление вихревым
токам.
По форме магнитопровода трансформаторы бывают стержневые и броневые. Стержневые набираются из П-образных пластин, а броневые – из Ш-образных. В обоих случаях магнитопровод может не набираться из листов, а навиваться из ленты, как показано на рис. 2. Ленточные магнитопроводы более экономичны, так как у них плавняе обводы (нет углов), что заметног уменьшает рассеяние потока из магнитопровода и, следовательно, увеличивает индуктивную связь обмоток.
В трансформаторах, работающих на высоких частотах, магнитопроводы делают из порошковых материалов – ферритов, так как даже в тонких пластинах потери от вихревых токов на высоких частотах оказываются недопустимо большими.
В трансформаторах большой мощности – в десятки и сотни мегаватт – интенсивность тепловыделения и нагрев обмоток настолько велики, что трансформатор приходится принудительно охлаждать, помещая его в кожух, заполненный циркулирующим трансформаторным маслом.
1 .3. Принцип действия трансформатора
К
ак
отмечалось, работа трансформатора
основана на электромагнитной
индукции.
Пусть трансформатор имеет две обмотки:
первичную,
содержащую N1
витков, и вторичную,
содержащую N2
витков (рис. 3).
И пусть к первичной обмотке приложено синусоидальное напряжение
и1=
.
(1)
Протекающий по ней переменный ток i1(t) создаст в магнитопроводе поле Н, определяемое теоремой о циркуляции
,
(2)
а значит, в магнитопроводе появится и переменное поле В (индукция). Следовательно, будет и магнитный поток Ф=ВS, замыкающийся по магнитопроводу (здесь S – сечение магнитопровода).
Законы Ома и электромагнитной индукции, применённые к контуру первичной обмотки, дают:
и1=
,
(3)
где r1 – активное сопротивление первичной обмотки. А так как у реальных силовых трансформаторов сопротивления медных обмоток обычно невелики, то можно считать, что
r1I1≪U1, (4)
где I1 и U1 – амплитуды тока и напряжения в первичной обмотке (r1I1 меньше U1 примерно на два порядка). Поэтому вместо (3) можно с хорошей точностью записать:
и1=
.
Отсюда вывод: если входное напряжения трансформатора синусоидально, то и магнитный поток в его сердечнике также будет синусоидальным:
Ф(t)=
,
(5)
Если пренебречь рассеянием, то тот же самый синусоидальный поток (5) пронизывает и витки вторичной обмотки. Следовательно, в ней наводится синусоидальная ЭДС, которая создаёт на её концах напряжение
и2=
с амплитудой U2=
.
Определение. Отношение
k=
,
(6)
показывающее, во сколько раз амплитуда напряжения на вторичной обмотке больше, чем на первичной, называется коэффициентом трансформации. Если k>1, то трансформатор называется повышающим, а при k<1 – понижающим.
Таким образом, амплитуды напряжений на обмотках относятся как числа их витков.
