
- •3.2.7. Датчики температуры 64
- •3.2.7.1. Общие сведения 64
- •3.2.8. Сети датчиков, интеллектуальные датчики 84
- •Глава 1. Микропроцессорная техника
- •1.1. Общие понятия
- •1.1.1. Уровни интеграции микросхем, выполненных по различным технологиям
- •Типы логики [вики]
- •1.1.2. Определения и особенности микропроцессора, микропроцессорной системы и микроконтроллера
- •1.2. Структура типичной микроэвм
- •1.2.1. Система шин микроЭвм
- •1.2.2. Микропроцессор
- •1.2.3. Память
- •1.2.4. Порты
- •1.3. Формирование сигналов на системной магистрали
- •1.3.1. Основные управляющие сигналы
- •1.3.2. Чтение данных из памяти
- •1.3.3. Запись данных в память
- •1.3.4. Чтение данных из порта ввода
- •1.3.5. Запись данных в порт вывода
- •1.4.1. Структура микропроцессора кр580вм80
- •1.4.2. Выполнение команд в микропроцессоре
- •1.5. Система команд микропроцессора кр580вм80
- •1.5.1. Команды пересылки
- •1.5.2. Арифметические команды
- •1.5.3. Логические команды
- •1.5.4. Формирование и работа стека
- •1.5.5. Команды перехода
- •1.5.6. Команды вызова подпрограмм и возврата из них
- •1.5.7. Команды сдвига
- •1.5.8. Команды ввода/вывода
- •1.6. Микросхемы шинных формирователей
- •1.6.1. Элементы с тремя состояниями
- •1.6.2. Шинные формирователи
- •1.6.3. Буферный регистр
- •1.7. Микросхемы дешифраторов и демультиплексоров
- •1.7.1. Назначение дешифраторов
- •1.7.2. Микросхемы дешифраторов
- •1.7.3. Структура дешифратора
- •1.7.4. Микросхемы демультиплексоров
- •1.8. Микросхемы памяти
- •1.8.1. Классификация запоминающих устройств
- •1.8.2. Параметры микросхем памяти
- •1.8.3. Микросхемы постоянных запоминающих устройств
- •1.8.3.1. Масочные микросхемы пзу
- •1.8.3.2. Программируемые микросхемы пзу
- •1.8.3.3. Многократно программируемые микросхемы пзу
- •1.8.4. Микросхемы оперативных запоминающих устройств
- •1.8.4.1. Микросхемы статических озу
- •1.8.4.2. Микросхемы динамических озу
- •1.9. Подсистемы памяти
- •1.9.1. Увеличение разрядности
- •1.9.2. Увеличение количества ячеек
- •1.10. Параллельный интерфейс
- •1.10.1. Назначение и структура микросхемы кр580вв55
- •1.10.2. Условное обозначение и назначение выводов микросхемы кр580вв55
- •1.11. Подсистемы ввода/вывода
- •1.11.1. Ввод данных в микроЭвм
- •1.11.2. Вывод данных из микроЭвм
- •1.12. Последовательный интерфейс
- •1.12.1. Асинхронный обмен
- •1.12.2. Синхронный обмен
- •1.12.3. Программируемый связной адаптер
- •1.12.3.1. Условное обозначение и назначение выводов адаптера
- •1.12.3.2. Программирование и работа с адаптером
- •1.13. Обмен данными по прерываниям
- •1.13.1. Понятие прерывания
- •1.13.1.1. Многоуровневые прерывания
- •1.13.1.2. Приоритетные прерывания
- •1.13.2. Идентификация источника прерывания
- •1.13.2.1. Программный поллинг
- •1.12.2.2. Аппаратный поллинг
- •1.13.3. Программируемый контроллер прерываний
- •1.13.3.1. Общая характеристика контроллера
- •1.13.3.2. Выводы контроллера
- •1.13.3.3. Принцип работы контроллера прерываний
- •1.13.3.4. Каскадирование контроллеров
- •1.13.3.5. Порядок работы с контроллером
- •1.14. Прямой доступ к памяти
- •1.15. Программируемый таймер
- •1.15.1. Назначение таймеров
- •1.15.2. Микросхема пит кр580ви53/54
- •1.15.3. Назначение выводов пит
- •1.15.4. Программирование и работа пит
- •1.15.5. Режимы работы пит
- •1.16. История развития и современное состояние средств микропроцессорной техники
- •1.16.1. История развития микропроцессорной техники
- •1.16.2. Современное состояние средств микропроцессорной техники
- •Глава 2. Микропроцессорные системы
- •2.1. Основы микропроцессора
- •2.2. Основные исторические сведения о развитии микропроцессоров
- •2.3. Микропроцессор - основа эвм
- •2.4. Микропроцессорные системы
- •2.4.1. Классификация микропроцессоров. Понятие о разрядности и системе команд
- •2.4.2. Основные характеристики и критерии производительности микропроцессора
- •2.4.3. Архитектура простейших микропроцессорных систем
- •2.4.4. Архитектуры многопроцессорных вычислительных систем. Принципы построения mpp- и smp-систем
- •2.5. Структура однокристального мп, состав и назначение элементов
- •2.6. Многоядерные микропроцессорные системы
- •2.7. Управляющий автомат простейшей микропроцессорной системы
- •2.7.1. Алгоритм управляющего автомата
- •2.7.2. Цикл команды в мпс
- •2.7.3. Тактирование мп и синхронизация мпс
- •2.7.4. Слово состояния мп как средство управления системой
- •2.7.5. Управляющее устройство мп. Мпс под управлением первичного автомата
- •2.7.6. Работа первичного управляющего автомата в режиме прерывания
- •2.7.7. Работа первичного управляющего автомата в режиме захвата шин
- •2.8. Методы и способы организации памяти
- •2.9. Принципы действия ячеек памяти
- •2.9.1. Динамическая память
- •2.9.2. Статическая память
- •2.9.3. Энергонезависимая память
- •2.10. Кэширование
- •2.11. Карта памяти. Критерии и способы распределения адресного пространства
- •Глава 3. Микропроцессорные системы и управление
- •3.2. Микропроцессорные системы с датчиками
- •3.2.1. Общие сведения
- •3.2.2. Резистивные датчики
- •3.2.3. Тензометрические датчики
- •3.2.4. Применение тензодатчиков для измерения силы
- •3. 2.5. Измерение потоков жидкостей и газов
- •3.2.6. Измерение деформации
- •3.2.7. Датчики температуры
- •3.2.7.1. Общие сведения
- •3.2.7.2. Термопары и компенсация холодного спая
- •3.2.7.3. Резистивные датчики температуры
- •3.2.7.4. Термисторы
- •2.7.5. Полупроводниковые датчики температуры
- •3.2.7.6. Датчики температуры с цифровым выходом
- •3.2.7.7. Термореле и регуляторы с установкой температуры
- •3.2.7.8. Аналого-цифровые преобразователи с датчиком температуры на одном кристалле
- •3.2.8. Сети датчиков, интеллектуальные датчики
- •3.2.8.1. Токовая петля
- •3.2.8.2. Объединение датчиков в сеть
- •3.3.Развитие систем управления
- •3.3.1. Контур управления
- •3.3.2. Компьютерная регистрация данных
- •3.3.3.Машинное диспетчерское управление (мду)
- •3.3.4.Прямое цифровое управление (пцу)
- •Глава 4. Распределенные системы управления
- •4.1.Элементы системы
- •4.1.1. Принципы распределенного управления
- •4.1.2. Конечные элементы системы управления
- •4.1.3. Другие элементы
- •4.1.4. Распределенное управление
- •4.2.Передача данных
- •4.2.1.Информационная магистраль
- •4.2.2. Формат данных
- •4.2.3. Командные слова
- •4.2.4.Информационные слова
- •4.2.5.Модули информационной магистрали
- •4.2.6.Предпочтительный доступ
- •4.2.7.Последовательный опрос
- •4.2.8.Контроллер связи
- •4.2.9.Контроль ошибок
- •4.3.Базовый контроллер
- •4.3.1.Настраиваемые параметры
- •4.3.2.Аппаратная конфигурация контроллера
- •4.3.3.Центральный процессор (цп)
- •4.3.4.Магистральный интерфейс
- •4.3.5.Блок удержания выходных сигналов
- •4.3.6.Память
- •4.3.7.Шина данных
- •4.3.8.Назначение адресов
- •4.3.9.Обобщение по работе контроллера
- •4.4. Настройка базового контроллера рсу
- •4.4.1. Настройка контроллера
- •4.4.2.Режимы управления
- •4.4.3. Конфигурационные слова
- •4.4.4.Метод конфигурирования
- •4.4.5.Диагностика
- •4.4.6.Алгоритмы
- •4.5. Бесперебойное автоматическое управление (бау)
- •4.5.1.Необходимость резервирования
- •4.5.2.Работа системы
- •4.5.3.Реальная система
- •Дополнения к системе бау
- •Порядок работы бау
- •4.6. Блоки обработки
- •Устройство блока обработки
- •Конструкция блока обработки
- •Функции обработки данных
- •Принцип работы
- •Пульт оператора
- •Оборудование, входящее в состав пульта оператора
- •Блок плат пульта оператора
- •Эргономика
- •Дисплеи на пульте оператора
- •4.7.5. Усовершенствованные распределенные системы управления
- •4.7.5.1. Ограничение систем с информационной магистралью
- •4.7.5.2. Усовершенствованная рсу
- •4.7.5.3. Локальная вычислительная сеть (лвс)
- •Шлюзовый модуль (шм)
- •Структура системы
- •Система высокого уровня (лвс)
- •Обмен данными
- •Модули лвс
- •Отчеты в среде рсу
- •Обработка данных в усовершенствованнной рсу.
- •Настройка рсу
- •4.9.1.Конфигурационные данные
- •Конфигурационные данные системы (кдс)
- •Конфигурационные данные процесса
- •Зональная база данных
- •Организация базы данных элементов техпроцесса
- •Принципы усовершествованного управления
- •Уровни управления
- •Управление первого уровния от устройства им
- •Управление второго уровня от миникомпьютера
- •Управление 3-го уровня от центральной эвм
- •Вопросы техобслуживания
- •Техобслуживание конечных элементов
- •Проверка калибровки контура управления
- •Техобслуживание блока информационной магистрали
- •Источники питания
- •Системы бесперебойного питания (ups)
- •Глава 5. Примеры распределенных систем управления
4.2.7.Последовательный опрос
Модули ИМ, способные генерировать сообщения, являются модулями с периодическим опросом, на информационной магистрали им назначаются адреса в промежутке 5-31. Это обычно Блоки Обработки Данных, которые ведут свои собственные базы данных. Контроллеры не посылают сообщений, они только отвечают на адресованные им командные слова, таким образом, они только отвечают на запросы и в опросе не участвуют.
Упорядоченный опрос Контроллер Связи автоматически выполняет каждые 10 миллисекунд при условии, что отсутствуют неотвеченные запросы с предпочтительным доступом и обмен информацией по ИМ остановлен на период не менее 80 миллисекунд. Опрос принимается всеми соответствующими модулями. Если опрашиваемому модулю необходим доступ к ИМ, он должен ответить на сигнал опроса подачей сигнала на ИМ через определенный временной промежуток после команды опроса.
Временные промежутки длятся 8 мс и начинаются через 5 мс после завершения команды опроса; всего 31 период времени (248 µс). Временной интервал пропорционален адресу опрашиваемого блока.
Например, если опрашиваемому блоку с адресом №7 необходим доступ к ИМ, он должен передать импульс длиной 1 µс на магистраль через (6 x 8) + 5 = 53 µс.
Контроллер Связи сохраняет импульсы, полученные в ответ на опрос, после чего предоставляет доступ к ИМ в восходящем порядке адресов, реализуемого с помощью командного слова, адресованного опрошенному модулю, на которое он должен ответить в течение 80 микросекунд.
4.2.8.Контроллер связи
Контроллер Связи расположен в ИМ под адресом 0 и управляет обменом информации по ИМ, поддерживает до 63 других блоков, подключенных к магистрали. КС должен обеспечивать идентичную связь на двух коаксиальных кабелях ИМ, активном и резервном таким образом, чтобы все блоки могли прослушивать друг друга (но отвечать только по активному кабелю).
Контроллер Связи выполняет следующие функции:
управляет обменом данных по Информационной Магистрали таким образом, что связь повторяется на всех (не более трех) секциях ИМ
устанавливает приоритет для модулей с предпочтительным доступом на ИМ и посылает им разрешающие сигналы на доступ к магистрали в порядке возрастания адресов
проводит опрос всех модулей на ИМ в порядке адресной нумерации, предоставляя доступ модулям к ИМ (которые отвечают на запрос) в порядке адресной нумерации
определяет, какой из двух коаксиальных кабелей является активным, а какой резервным, и переключает их по команде от модуля с предпочтительным доступом.
РИС.
3.2 Информационная магистраль
На РИС. 3.2 показан Контроллер Связи, подключенный к трем секциям ИМ. Три блока с ПД – станция оператора и два блока обработки напрямую соединены с Контроллером Связи. Три секции ИМ могут быть различной длины, максимум до 6000 метров на секцию. На одном конце секции оканчиваются Контроллером Связи, на другом – оконечными нагрузками сопротивлением 75 Ом. Блоки подключены к ИМ с помощью тройников, таким образом, отключение или демонтаж одного из блоков не влияет на целостность магистрали. ИМ - это 75-омный коаксиальный кабель.
Как показано на РИС. 3.2, к ИМ можно подключить другие блоки обработки (без жесткого монтажа) в качестве блока с ПД. Предпочтительный доступ необходим только для устройств, базы данных которых могут содержать особо важную информацию (например, технологические аварийные сигналы, требующие немедленной передачи на станцию оператора).
Цифры на РИС. 3.2 обозначают стандартные адреса элементов ИМ, при этом за Контроллером Связи всегда зарезервирован адрес 0. Устройства с ПД имеют адреса от 1 до 4, последний обычно зарезервирован за пультом оператора. Блокам обработки присваиваются адреса в диапазоне 5-31, а контроллерам, которые являются отвечающими устройствами, обычно присваиваются адреса в диапазоне 5-63.
На РИС. 3.3 показан алгоритм Контроллера Связи, на котором видно, что Контроллер Связи переходит в режим повторения и работает по замкнутому алгоритму.
После перехода в режим повторения (режим репитера) Контроллер Связи ожидает 80 µс промежуток в передаче данных по ИМ. Если это не происходит, и в течение 30 миллисекунд не происходит опроса, посылается аварийный сигнал опроса, форсируя этот процесс, без учета ожидающих блоков с предпочтительным доступом.
РИС.
3.3