
- •3.2.7. Датчики температуры 64
- •3.2.7.1. Общие сведения 64
- •3.2.8. Сети датчиков, интеллектуальные датчики 84
- •Глава 1. Микропроцессорная техника
- •1.1. Общие понятия
- •1.1.1. Уровни интеграции микросхем, выполненных по различным технологиям
- •Типы логики [вики]
- •1.1.2. Определения и особенности микропроцессора, микропроцессорной системы и микроконтроллера
- •1.2. Структура типичной микроэвм
- •1.2.1. Система шин микроЭвм
- •1.2.2. Микропроцессор
- •1.2.3. Память
- •1.2.4. Порты
- •1.3. Формирование сигналов на системной магистрали
- •1.3.1. Основные управляющие сигналы
- •1.3.2. Чтение данных из памяти
- •1.3.3. Запись данных в память
- •1.3.4. Чтение данных из порта ввода
- •1.3.5. Запись данных в порт вывода
- •1.4.1. Структура микропроцессора кр580вм80
- •1.4.2. Выполнение команд в микропроцессоре
- •1.5. Система команд микропроцессора кр580вм80
- •1.5.1. Команды пересылки
- •1.5.2. Арифметические команды
- •1.5.3. Логические команды
- •1.5.4. Формирование и работа стека
- •1.5.5. Команды перехода
- •1.5.6. Команды вызова подпрограмм и возврата из них
- •1.5.7. Команды сдвига
- •1.5.8. Команды ввода/вывода
- •1.6. Микросхемы шинных формирователей
- •1.6.1. Элементы с тремя состояниями
- •1.6.2. Шинные формирователи
- •1.6.3. Буферный регистр
- •1.7. Микросхемы дешифраторов и демультиплексоров
- •1.7.1. Назначение дешифраторов
- •1.7.2. Микросхемы дешифраторов
- •1.7.3. Структура дешифратора
- •1.7.4. Микросхемы демультиплексоров
- •1.8. Микросхемы памяти
- •1.8.1. Классификация запоминающих устройств
- •1.8.2. Параметры микросхем памяти
- •1.8.3. Микросхемы постоянных запоминающих устройств
- •1.8.3.1. Масочные микросхемы пзу
- •1.8.3.2. Программируемые микросхемы пзу
- •1.8.3.3. Многократно программируемые микросхемы пзу
- •1.8.4. Микросхемы оперативных запоминающих устройств
- •1.8.4.1. Микросхемы статических озу
- •1.8.4.2. Микросхемы динамических озу
- •1.9. Подсистемы памяти
- •1.9.1. Увеличение разрядности
- •1.9.2. Увеличение количества ячеек
- •1.10. Параллельный интерфейс
- •1.10.1. Назначение и структура микросхемы кр580вв55
- •1.10.2. Условное обозначение и назначение выводов микросхемы кр580вв55
- •1.11. Подсистемы ввода/вывода
- •1.11.1. Ввод данных в микроЭвм
- •1.11.2. Вывод данных из микроЭвм
- •1.12. Последовательный интерфейс
- •1.12.1. Асинхронный обмен
- •1.12.2. Синхронный обмен
- •1.12.3. Программируемый связной адаптер
- •1.12.3.1. Условное обозначение и назначение выводов адаптера
- •1.12.3.2. Программирование и работа с адаптером
- •1.13. Обмен данными по прерываниям
- •1.13.1. Понятие прерывания
- •1.13.1.1. Многоуровневые прерывания
- •1.13.1.2. Приоритетные прерывания
- •1.13.2. Идентификация источника прерывания
- •1.13.2.1. Программный поллинг
- •1.12.2.2. Аппаратный поллинг
- •1.13.3. Программируемый контроллер прерываний
- •1.13.3.1. Общая характеристика контроллера
- •1.13.3.2. Выводы контроллера
- •1.13.3.3. Принцип работы контроллера прерываний
- •1.13.3.4. Каскадирование контроллеров
- •1.13.3.5. Порядок работы с контроллером
- •1.14. Прямой доступ к памяти
- •1.15. Программируемый таймер
- •1.15.1. Назначение таймеров
- •1.15.2. Микросхема пит кр580ви53/54
- •1.15.3. Назначение выводов пит
- •1.15.4. Программирование и работа пит
- •1.15.5. Режимы работы пит
- •1.16. История развития и современное состояние средств микропроцессорной техники
- •1.16.1. История развития микропроцессорной техники
- •1.16.2. Современное состояние средств микропроцессорной техники
- •Глава 2. Микропроцессорные системы
- •2.1. Основы микропроцессора
- •2.2. Основные исторические сведения о развитии микропроцессоров
- •2.3. Микропроцессор - основа эвм
- •2.4. Микропроцессорные системы
- •2.4.1. Классификация микропроцессоров. Понятие о разрядности и системе команд
- •2.4.2. Основные характеристики и критерии производительности микропроцессора
- •2.4.3. Архитектура простейших микропроцессорных систем
- •2.4.4. Архитектуры многопроцессорных вычислительных систем. Принципы построения mpp- и smp-систем
- •2.5. Структура однокристального мп, состав и назначение элементов
- •2.6. Многоядерные микропроцессорные системы
- •2.7. Управляющий автомат простейшей микропроцессорной системы
- •2.7.1. Алгоритм управляющего автомата
- •2.7.2. Цикл команды в мпс
- •2.7.3. Тактирование мп и синхронизация мпс
- •2.7.4. Слово состояния мп как средство управления системой
- •2.7.5. Управляющее устройство мп. Мпс под управлением первичного автомата
- •2.7.6. Работа первичного управляющего автомата в режиме прерывания
- •2.7.7. Работа первичного управляющего автомата в режиме захвата шин
- •2.8. Методы и способы организации памяти
- •2.9. Принципы действия ячеек памяти
- •2.9.1. Динамическая память
- •2.9.2. Статическая память
- •2.9.3. Энергонезависимая память
- •2.10. Кэширование
- •2.11. Карта памяти. Критерии и способы распределения адресного пространства
- •Глава 3. Микропроцессорные системы и управление
- •3.2. Микропроцессорные системы с датчиками
- •3.2.1. Общие сведения
- •3.2.2. Резистивные датчики
- •3.2.3. Тензометрические датчики
- •3.2.4. Применение тензодатчиков для измерения силы
- •3. 2.5. Измерение потоков жидкостей и газов
- •3.2.6. Измерение деформации
- •3.2.7. Датчики температуры
- •3.2.7.1. Общие сведения
- •3.2.7.2. Термопары и компенсация холодного спая
- •3.2.7.3. Резистивные датчики температуры
- •3.2.7.4. Термисторы
- •2.7.5. Полупроводниковые датчики температуры
- •3.2.7.6. Датчики температуры с цифровым выходом
- •3.2.7.7. Термореле и регуляторы с установкой температуры
- •3.2.7.8. Аналого-цифровые преобразователи с датчиком температуры на одном кристалле
- •3.2.8. Сети датчиков, интеллектуальные датчики
- •3.2.8.1. Токовая петля
- •3.2.8.2. Объединение датчиков в сеть
- •3.3.Развитие систем управления
- •3.3.1. Контур управления
- •3.3.2. Компьютерная регистрация данных
- •3.3.3.Машинное диспетчерское управление (мду)
- •3.3.4.Прямое цифровое управление (пцу)
- •Глава 4. Распределенные системы управления
- •4.1.Элементы системы
- •4.1.1. Принципы распределенного управления
- •4.1.2. Конечные элементы системы управления
- •4.1.3. Другие элементы
- •4.1.4. Распределенное управление
- •4.2.Передача данных
- •4.2.1.Информационная магистраль
- •4.2.2. Формат данных
- •4.2.3. Командные слова
- •4.2.4.Информационные слова
- •4.2.5.Модули информационной магистрали
- •4.2.6.Предпочтительный доступ
- •4.2.7.Последовательный опрос
- •4.2.8.Контроллер связи
- •4.2.9.Контроль ошибок
- •4.3.Базовый контроллер
- •4.3.1.Настраиваемые параметры
- •4.3.2.Аппаратная конфигурация контроллера
- •4.3.3.Центральный процессор (цп)
- •4.3.4.Магистральный интерфейс
- •4.3.5.Блок удержания выходных сигналов
- •4.3.6.Память
- •4.3.7.Шина данных
- •4.3.8.Назначение адресов
- •4.3.9.Обобщение по работе контроллера
- •4.4. Настройка базового контроллера рсу
- •4.4.1. Настройка контроллера
- •4.4.2.Режимы управления
- •4.4.3. Конфигурационные слова
- •4.4.4.Метод конфигурирования
- •4.4.5.Диагностика
- •4.4.6.Алгоритмы
- •4.5. Бесперебойное автоматическое управление (бау)
- •4.5.1.Необходимость резервирования
- •4.5.2.Работа системы
- •4.5.3.Реальная система
- •Дополнения к системе бау
- •Порядок работы бау
- •4.6. Блоки обработки
- •Устройство блока обработки
- •Конструкция блока обработки
- •Функции обработки данных
- •Принцип работы
- •Пульт оператора
- •Оборудование, входящее в состав пульта оператора
- •Блок плат пульта оператора
- •Эргономика
- •Дисплеи на пульте оператора
- •4.7.5. Усовершенствованные распределенные системы управления
- •4.7.5.1. Ограничение систем с информационной магистралью
- •4.7.5.2. Усовершенствованная рсу
- •4.7.5.3. Локальная вычислительная сеть (лвс)
- •Шлюзовый модуль (шм)
- •Структура системы
- •Система высокого уровня (лвс)
- •Обмен данными
- •Модули лвс
- •Отчеты в среде рсу
- •Обработка данных в усовершенствованнной рсу.
- •Настройка рсу
- •4.9.1.Конфигурационные данные
- •Конфигурационные данные системы (кдс)
- •Конфигурационные данные процесса
- •Зональная база данных
- •Организация базы данных элементов техпроцесса
- •Принципы усовершествованного управления
- •Уровни управления
- •Управление первого уровния от устройства им
- •Управление второго уровня от миникомпьютера
- •Управление 3-го уровня от центральной эвм
- •Вопросы техобслуживания
- •Техобслуживание конечных элементов
- •Проверка калибровки контура управления
- •Техобслуживание блока информационной магистрали
- •Источники питания
- •Системы бесперебойного питания (ups)
- •Глава 5. Примеры распределенных систем управления
1.12. Последовательный интерфейс
Многие устройства ввода/вывода обмениваются информацией с компьютером последовательно по одному биту, причем каждый бит занимает определенный временной интервал. Единица информации (элемент данных) при последовательном обмене называется символом. Символ может содержать от 5 до 8 информационных бит. Скорость передачи информации измеряется в бодах (в честь французского изобретателя телеграфного аппарата Жана Бодо):
1 бод = 1 бит/с.
Иногда под бодом понимают количество передаваемых символов в секунду.
Достоинства последовательного интерфейса:
относительная дешевизна ввиду малого количества проводников;
высокая помехозащищенность за счет использования высоких уровней напряжения (тока);
большое расстояние между передатчиком и приемником.
Недостатки:
низкая производительность;
относительно сложная интерпретация передаваемых данных.
Последовательная система передачи информации может быть симплексной, полудуплексной или дуплексной. В первом случае данные передаются только в одну сторону (от передатчика к приемнику), во втором - в обе, но с разделением во времени, а в третьем - в обоих направлениях одновременно.
Рис. 12.1
Типичная конфигурация дуплексного последовательного интерфейса показана на рис. 12.1. Регистр состояния содержит информацию о состоянии текущей передачи (например, об ошибках), а регистр управления хранит информацию о режиме работы интерфейса. Буферный регистр входных данных подключен к регистру сдвига с последовательным входом и параллельным выходом. В операции ввода биты по одному подаются в регистр сдвига, а после приема символа информация передается в буферный регистр входных данных и ожидает ввода в микропроцессор. Буферный регистр выходных данных аналогично подключен к регистру сдвига с параллельным входом и последовательным выходом. Вывод осуществляется выдачей данных в буфер выходных данных, передачей их в регистр сдвига и последующим сдвигом данных на последовательную выходную линию.
Различают два основных вида последовательного обмена: асинхронный и синхронный.
1.12.1. Асинхронный обмен
В асинхронном режиме последовательного обмена информацией каждый символ передается автономно, а передача может быть начата в любой момент битом паритета (битом четности/нечетности) и одним, полутора и двумя стоповыми битами. Полученная таким образом посылка информации называется кадром.
Пример временной диаграммы передачи 6-битного символа по асинхронному интерфейсу с битом паритета и двумя стоповыми битами представлен на рис. 12.2.
В режиме ожидания передачи символа приемник отслеживает состояние линии, которая находится под высоким потенциалом, соответствующим логической единице. Спад сигнала на линии считается предполагаемым началом стартового бита. Достоверность этого события проверяется через промежуток времени, равный половине периода передачи битов символа - T/2. Если в этот момент на линии низкий уровень сигнала, то передача символа считается начатой и приемник приступает к опросу состояния линии в центрах битовых посылок с периодом T, начиная с середины стартового бита. Иначе считается, что спад сигнала был вызван помехой на линии и приемник возвращается в режим ожидания нового символа.
Рис. 12.2
Биты символа следуют после стартового, начиная с младшего D0. После символа располагается необязательный бит паритета, применяемый для простейшего контроля правильности принятого символа. Если в конкретной реализации асинхронного обмена бит паритета используется, то передатчик в зависимости от соглашения устанавливает значение бита паритета таким образом, чтобы суммарное количество единиц в символе вместе с битом паритета было четным или нечетным. Приемник подсчитывает суммарное количество единиц в принятом символе и бите паритета и, если оно соответствует принятому соглашению, считает символ верным. Иначе в регистре состояния приемника возникает ошибка паритета.
Для отделения одного кадра от другого за передаваемым символом или необязательным битом паритета следуют стоповые биты, число которых также зависит от соглашения. После приема последнего стопового бита приемник вновь переходит в режим ожидания очередного символа.
Важно отметить, что микропроцессор не выдает и не принимает стартовый и стоповый биты, а также бит паритета. При обмене информацией передатчик вводит эти биты в каждый символ, а приемник удаляет их из принятых данных.
Для успешного обмена необходимо выполнить следующие условия:
формат кадра должен быть согласован у приемника и передатчика, которые настраиваются на символ одной и той же длины, одинаково интерпретируют бит паритета, если он есть, настраиваются на одинаковое количество стоповых битов;
частота битовых посылок и их фаза должна быть одинаковой с точки зрения приемника и передатчика.
Обеспечение выполнения первого условия достаточно просто достигается при проектировании и согласованном программировании интерфейса. Выполнить второе условие несколько сложнее из-за удаленности приемника и передатчика друг от друга. Они имеют разные генераторы синхроимпульсов с кварцевыми резонаторами, что позволяет получить стабильные и близкие частоты синхронизации приемника и передатчика. Близость фаз битовых посылок с точки зрения приемника и передатчика достигается за счет того, что частота синхроимпульсов многократно превосходит частоту битовых посылок (типичная кратность 1:16 или 1:64). В результате несовпадение фаз не превышает длительности одного синхроимпульса.
Нетрудно видеть, что скорость передачи составляет 1/T бод. Серьезный недостаток асинхронного обмена - большое количество служебных бит, снижающее эффективную скорость передачи. Например, если кадр состоит из пятибитового символа и четырех служебных бит, то непроизводительное использование линии составит (4/(5 + 4)) х 100 % « 44 %, не считая возможных промежутков между символами. Поэтому асинхронный режим применяется в низкопроизводительных линиях с нерегулярным обменом.