
- •I. Что такое восприятие?
- •1. Восприятие как форма отражения
- •2. Теории восприятия
- •3. Теория перцептивных действий
- •II. Классификация перцептивных процессов
- •1. Сенсорные процессы
- •2. Перцептивные системы
- •3. Интермодальные ощущения и синестезии
- •III. Психофизика
- •1. Абсолютные и разностные пороги.
- •2. Шкалирование ощущений
- •3. Адаптация и сенсибилизация
- •IV. Зрительная система
- •1. Анатомо-физиологические основы зрения
- •2. Зрительное восприятие и типы движений глаз
- •3. Восприятие цвета
- •4. Зрительное восприятие пространства
- •5. Восприятие движения
- •6. Восприятие формы
- •V. Слуховая система
- •1. Физиологические основы слуха
- •2. Слуховые ощущения
- •3. Слуховое восприятии пространства
- •4. Звуковысотный слух
- •5. Речевой слух
- •VI. Кожно-мышечная система
- •1. Болевая чувствительность
- •2. Температурная чувствительность.
- •3. Тактильные ощущения
- •4. Схема тела и регуляция движений
- •5. Активное осязание (гаптическое восприятие)
- •VII. Обонятельно-вкусовая система
- •1. Анатомно-физиологические основы обоняния и вкуса
- •2. Вкусовые ощущения
- •3. Обонятельные ощущения
- •VIII. Вестибулярная система
- •1. Анатомо-физиологическое строение вестибулярного аппарата
- •2. Моторные реакции на вестибулярную информацию
- •3. Восприятие положения и движения
2. Температурная чувствительность.
Подобно другим видам сенсорных процессов температурная чувствительность участвует в регуляции различных по сложности поведенческих актов. На самом низком уровне она представляет собой афферентное звено рефлекторных реакций сохранения
203
теплового баланса организма и среды, как озноб, изменение скорости кровотока, потоотделение и т. д., на значительно более высоком уровне температурная чувствительность побуждает нас одеть теплую одежду или закрыть окна. В том и другом случае информация о температуре поступает в ЦНС от специализированных рецепторов.
Рецепторы температурной чувствительности так же, как и болевой, представляют собой свободные окончания тонких нервных волокон. Они находятся во втором чувствительном слое кожи между ороговевшей оболочкой и подкожной клетчаткой. Нервные окончания расположены как в волосяных, так и в безволосых участках кожи. Во втором случае они оканчиваются в состоящих из соединительной ткани капсулах. Однако, как показывают исследования, температурная чувствительность одинаково высока в обоих случаях, поэтому эти капсулы нельзя считать температурными рецепторами.
Вопрос о механизме раздражения температурных рецепторов столь же не ясен, как аналогичные вопросы для болевой, вкусовой или обонятельной чувствительности. Согласно одним теориям, рецепторы реагируют на изменение температуры тканей или на возникающие в них объемные градиенты температуры. Против этих объяснений говорит относительная медленность изменения температурных ощущений. Другая теория, автором которой является американский физиолог Дж. Нэф (1968), связывает информацию о температуре с механическим воздействием, оказываемым на рецептор деформирующимися под влиянием тепла или холода тканями. Эта теория позволяет объяснить безуспешность попыток найти волокна, реагирующие отдельно на тепло или на холод. Различение тепла и холода может быть основано, с этой точки зрения, на различных в реакциях гладкой мускулатуры и сосудов кожи на эти физические раздражители.
Проводящие пути температурной чувствительности совпадают с путями болевой. Они идут в составе экстралемнисковой системы (рис. 87), заканчиваясь на уровне таламуса. Лишь незначительное число волокон поступает
204
дальше в нижнюю часть постцентральной извилины коры головного мозга.
Как показали психофизические исследования, наш организм не всегда представляет собой хороший термометр. Так, температура различных участков кожи варьирует от 28 до 34°С, но эти различия не замечаются человеком. Фактически, при раздражении небольших участков кожи мы замечаем лишь резкие изменения температуры. Это говорит о том, что температурные ощущения подвержены сравнительно высокой адаптации.
Адаптацию температурной чувствительности можно продемонстрировать следующим образом. В течение 5—10 минут одна рука держится в сосуде с холодной, а другая — с теплой водой. Затем обе руки одновременно опускаются в сосуд с водой комнатной температуры. При этом, как ни парадоксально, одной рукой (бывшей в холоде) ощущается тепло, а другой рукой (бывшей в тепле) — холод.
Важное место в анализе температурной чувствительности занимает понятие физиологической нулевой температуры. Это температура, которая при данных условиях кажется ни теплой, ни холодной. Как видно, физиологическая нулевая температура представляет собой ничто иное как уровень адаптации в понимании Г. Хелсона (см. стр. 86). При длительном воздействии раздражителя уровень температурной адаптации может сравняться с его величиной, если только она лежит в пределах от 24 до 35°. В этих границах знак изменения температуры определяет появление ощущений "теплого" и "холодного". При выходе температуры раздражителей за эти границы они всегда воспринимаются нами как теплые или холодные независимо от времени стимуляции кожи.
При средних температурах величина порогов ощущений очень сильно зависит от уровня адаптации. На рис. 88 показана величина абсолютных порогов для ощущения "теплого" и "холодного" в зависимости от температуры, к которой длительное время была адаптирована кожа. Из рисунка видно, что при адаптации к низким температурам пороги "холодного" низки, а "теплого" высоки, и наоборот, при нагревании кожи достаточно небольшого
205
повышения температуры для возникновения ощущения "теплого", а ощущение "холодного" возникает лишь при сравнительно сильном нагревании (см. также стр. 85 и др.). Любопытно, что чувствительность к холоду у женщин (кривая 2) выше, чем у мужчин (кривая 1).
|
Рис. 88. Абсолютные пороги ощущений "теплого" и "холодного" в зависимости от температуры, к которой длительное время была адаптирована кожа (по Дж. Нэфу и Д. Кеншало, 1966): 1) мужчины 2) женщины. |
|
Скорость и величина адаптации зависят от величины раздражаемой поверхности. Чем она больше, тем меньше адаптация. Эта зависимость объясняет тот факт, что адаптация к температуре окружения практически отсутствует.
206
От площади стимулируемой поверхности кожи сильно зависят и пороги температурных ощущений. Так, сравнительно трудно определить температуру предмета концом пальца и, напротив, легко, прикладывая к нему целую ладонь.
Этот эффект называется температурной пространственной суммацией. Он аналогичен зрительной пространственной суммации (см. стр. 112). Зона полной пространственной суммации равна, например, для кожи лба 15÷20 см2.
Изучение пространственной температурной суммации позволяет понять некоторые особенности центральной переработки информации о температуре. Например, одновременное раздражение ладоней левой и правой руки требует для возникновения ощущений "теплого" на 30% меньше энергии, чем при раздражении только одной ладони. Однако при раздражении одной из ладоней и кожи лба подобная пространственная суммация полностью отсутствует. Отсюда следует, что обработка температурной информации осуществляется не в зависимости от анатомотопографической близости раздражаемых участков тела, а в зависимости от их функционального родства (Дж. Харди и Т. Оппель, 1937).