
- •16. Ідеальна рідина. Стаціонарний рух рідини. Рівняння нерозривності. Р-ня Бернуллі. Ф-ла Торічеллі. Реакція рідини що витікає.
- •17. Закони збереження імпульсу. Закон збереження моменту імпульсу матеріальної точки. Збереження повної енергії матеріальної точки в полі потенціальних сил.
- •18. Основи мкт. Маса і розміри молекул. Основне р-ня мкт. Ідеальний газ. Р-ня стану ідеального газу. Газові закони
- •19. Властивості рідин. Насичена і ненасичена пара. Критична температура….
- •20. Властивості поверхні рідини. Поверхневий шар. Поверхневий натяг……
- •21. Вн. Енергія. Способи зміни вн.Енергії. Теплота і робота
- •22. Механічний еквівалент теплоти. Перше начало термодинаміки…………
- •23. Оборотні та необоротні процеси. Цикли. Цикл карно. Другий закон
- •24. Самоіндукція. Індуктивність. Енергія магнітного поля
- •25. Реальні гази. Відхилення властивостей реальних газів від законів ідеального……
- •26. Аморфні і кристалічні тіла. Монокристали і полікристали. Анізотропія фіз..Власт.Монокристалів
- •27. Електричне поле. Напруженість, потенціал. Принцип суперпозиції
- •28. Електрична ємність провідника. Конденсатор……
- •29. Постійний електричний струм. Умови існування струму. Сила струму. Електричне поле…..
- •30. Магнітне поле постійного електричного струму і постійного магніту. Основні характеритики магнітного поля. Закон ампера………….
- •31. Властивості магнітного потоку. Електромагнітна індукція. Досліди фарадея, правило ленца
- •32. Вимушені електричні коливання. Змінний електричний струм. Генератор змінного струму. Трансформатор.
- •33. Механізм виникнення коливань у контурі. Ідеальний коливальний контур
- •35. Поперечні та поздовжні хвилі……….
- •36. Прямолінійне поширення світла…
- •37. Поняття про когерентність…………
- •38. Закони фотоефекту……..
- •39. Планетарна модель атома……….
24. Самоіндукція. Індуктивність. Енергія магнітного поля
Самоіндукція — явище виникнення електрорушійної сили в провіднику при зміні електричного струму в ньому. Знак електрорушійної сили завжди такий, що вона протидіє зміні сили струму. Самоіндукція призводить до скінченного часу наростання сили струму при вмиканні джерела живлення і спадання струму при розмиканні електричного кола.
Величина електрорушійної сили самоіндукції визначається за формулою
,
де
—
е.р.с.,
—
сила струму, L — індуктивність.
Індуктивність — фізична величина, що характеризує здатність провідника нагромаджувати енергію магнітного поля, коли в ньому протікає електричний струм.
Позначається здебільшого латинською літерою L, у системі СІ вимірюється в Генрі.
Дорівнює відношенню магнітного потоку Φ через контур, визначений електричним колом, до величини струму І в колі , тобто
.
Енергія магнітного поля, створеного електричним струмом у колі, визначається формулою
.
Індуктивність залежить від форми контура.
Магні́тне по́ле — складова електромагнітного поля, за допомогою якої здійснюється взаємодія між рухомими електрично зарядженими частинками.
Магнітне поле - складова електромагнітного поля, яка створюється змінним у часі електричним полем, рухомими електричними зарядами або спінамизаряджених частинок. Магнітне поле спричиняє силову дію на рухомі електричні заряди.
Енергія магнітного поля в просторі задається формулою
.
25. Реальні гази. Відхилення властивостей реальних газів від законів ідеального……
Реа́льний газ (рос.реальный газ; англ. real gas, нім. reales Gas n, Realgas n) — газ, для якого термічне рівняння стану є відмінним від Клапейрона-Менделєєва.
На формі залежностей між його параметрами відбивається те, що молекули його взаємодіють між собою та займають певний об'єм.
Стан реального газу часто при вирішенні задач технічного характеру описують узагальненим рівнянням Клапейрона-Менделєєва (технічним рівнянням стану реального газу):
Для ідеального газу за будь-яких умов Z = 1, при якому записане рівняння перетворюється у рівняння стану ідеального газу. Для реальних газів Z може істотно відрізнятися від одиниці за певних умов, і завжди в сильно розрідженому газі (р → 0 і ρ → 0) в т. ч. і для реальних газів Z → 0.
Одна з класичних моделей опису реального газу — рівняння Ван дер Ваальса:
,
Рівняння Ван дер Ваальса є наближеним
рівнянням стану реального газу, причому
ступінь його наближення різний для
різних газів. Записана велика кількість
емпіричних і напівемпіричних рівнянь
стану реальних газів
Сили міжмолекулярної взаємодії
Законам ідеальних газів підпорядковуються тільки розріджені реальні гази. У всіх інших випадках властивості ідеальних і реальних газів істотно розрізняються. Наприклад, коефіцієнт стисливості ; з рівняння Менделеева-Клапейрона для ідеальних газів завжди дорівнює одиниці, проте він залежить від тиску й температури для реальних газів. Тому при досить високих тисках усі реальні гази менш стискувані, ніж ідеальні (навіть незалежно від температури). Дослідження таких характеристик, як питома теплоємність, в'язкість і т. ін., також виявили відмінності у властивостях ідеальних і реальних газів. Основна причина цих відмінностей полягає в тому, що поведінка молекул реальних газів відрізняється від поведінки молекул ідеальних газів. В усіх тілах, незалежно від їхнього агрегатного стану, молекули взаємодіють між собою, причому сили взаємодії значною мірою залежать від відстані між молекулами. Ці сили мають електромагнітну й особливу квантову природу. У силу того, що виявляються вони на відстані м і швидко зменшуються зі збільшенням відстані, їх називають короткодіючими.