Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпоры / шпоры эконометрика.docx
Скачиваний:
332
Добавлен:
04.06.2014
Размер:
1.45 Mб
Скачать

25. Мультипликативная модель временного ряда.

Для выявления структуры временного ряда, т.е. определения количественных значений компонентов, составляющих уровней ряда, чаще всего используют аддитивную или мультипликативную модели временных рядов.

Мультипликативная модель. У=Т*S*E

T-трендовая компонента

S-сезонная компонента

E-случайная компонента

Мультипликативная модель используется в случае, если амплитуда сезонных колебаний увеличивается или уменьшается.

Алгоритм построения модели. Процесс построения модели включает в себя следующие шаги:

  1. Выравнивание уровней исходного ряда методом скользящей средней.

  2. Расчет значений сезонной компоненты S

  3. Устранение сезонной компоненты из исходного уровня ряда и получение выровненных данных без S

  4. Аналитическое выравнивание уровней ряда и расчет значений фактора Т

  5. Расчет полученных значений (Т* S) для каждого уровня ряда

  6. Расчет абсолютных или относительных ошибок модели.

(или 4.Определение тенденции временного ряда и уравнения тренда; 5.Расчет абсолютных или относительных ошибок модели.)

26 Выделение сезонной составляющей

Оценку сезонной компоненты можно найти как частное от деления фактических уровней ряда на центрированные скользящие средние .

Для начала необходимо найти средние за период (квартал, месяц) оценки сезонной компоненты Si . В моделях сезонной компоненты обычно предполагается что сезонные взаимодействия за период взаимопоглощаются .

В мультипликативной модели взаимопоглощаемость сезонных воздействий выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна числу периодов в цикле.

Выравнивание исходных уровней с помощью скользящей средней: а) Суммируются уровни ряда последовательно за каждый период времени за каждые 4 квартала со сдвигом на 1 момент времени и определяются условные годовые объемы потребления б) Разделим полученные суммы на 4, получим скользящие средние. Полученные выравненные значения не содержат сезонной компоненты. в) Приводим эти значения в соответствие с фактическими моментами времени для чего найдем среднее значение из 2-х скользящих средних – центрированные скользящие средние.

27.Коэффициент корреляции.

Для определения степени линейной связи рассчитывается коэфф-т корреляции.

, -11.

Для определения нелинейной связи определяется индекс корреляции

, 0 1

Коэффициент детерминации: R2=2-для лин. связи. R2=2-для нелин. связи.

Показывает на сколько % изменения показателя у от своего среднего значения зависит от изменения фактора х от своего среднего значения. Чем ближе значение R² к 1, тем точнее модель.

Из всех полученных уравнений регрессии, лучшей является та, у которой коэф-т детерминации больший.

Если исследуется несколько факторов (больше2) то в этом случае рассчитывается множественный коэфф-т корреляции.RY,X1,X2..XN-множественный коэфф-т корреляции.

При анализе влияния нескольких факторов друг на друга определяется корреляционная матрица, которая состоит из всех возможных парных линейных коэфф-тов корреляции.

Корреляционная матрица:

Соседние файлы в папке Шпоры