
- •Органический синтез
- •Издание выпущено в свет при участии Института органической химии им. Н.Д. Зелинского Редакция литературы по химии
- •Глава 1
- •1.1. Цель однозначна и бесспорна
- •1.2. Цель однозначна, но не бесспорна
- •1.3. Синтез как поиск (цель бесспорна, но не однозначна).
- •1.4. Синтез как инструмент исследования
- •1.5. «Химия создает свой предмет...»
- •1.5.1. Выяснение закономерностей, связывающих
- •1.5.2. Создание новых структур, проблемных для органической химии
- •1.5.3. Расширение круга известных органических соединений
- •Глава 2
- •2.1. Каким образом может быть достигнуто требуемое превращение
- •2.1.1. Возможность протекания органической реакции. Общие соображения
- •2.1.2. Термодинамическая допустимость реакции
- •2.1.3. Наличие канала реакции.
- •2.1.4. Органическая реакция и синтетический метод
- •2.2. Образование связи с-с: ключевая тактическая проблема органического синтеза
- •2.2.1. Принципы сборки связи с-с. Гетеролитические реакции
- •2.2.2. Органические ионы и факторы, определяющие их стабильность
- •2.2.3. Электрофилы и нуклеофилы в реакциях образования связей с-с
- •2.2.3.1, Реакция Вюрца. Аллильное сочетание и родственные случаи
- •2.2.3.2. Карбонильные соединения как нуклеофилы и электрофилы
- •2.2.3.3. Сопряженное присоединение к аф-непределъным карбонильным соединениям. Аннелирование по Робинсону и присоединение по Михаэлю с независимой вариацией аддендов
- •2.2.3.4. Карбометаллирование алкинов
- •2.2.3.5. Ретросинтетический анализ ациклических целевых структур. Общие рекомендации.
- •Простая связь с—с в отсутствие близко расположенных функциональных групп.
- •Простая связь с-с в системе, содержащей два кислородных заместителя в положении 1,3.
- •Простая связь с-с в системе, содержащей два кислородных заместителя в положении 1,5.
- •2.2.3.6. Карбокатионные или карбанионные реагенты. О некоторых дополнительных возможностях проведения реакций образования связи с-с
- •2.3 Взаимопревращения функциональных групп
- •2.3.1. Уровень окисления углеродного центра и
- •2.3.2. Изогипсические трансформации. Синтетическая эквивалентность функциональных групп одного уровня окисления.
- •2.3.3. Неизогипсические трансформации как пути переходов между различными уровнями окисления
- •2.3.4. Взаимопревращение функциональных групп как стратегический метод в полном синтезе.
- •2.4. Как управлять селективностью органических реакций
- •2.4.1. Классификация проблем селективности
- •2.4.2 Селективность обеспечивается выбором подходящей реакции
- •2.4.3. Варьирование природы реагентов как способ управления селективностью реакции
- •2.4.4. Селективная активация
- •2.4.5. Защита функциональных групп как универсальный способ управления селективностью реакций
- •2.5. Реагенты, эквиваленты, синтоны
- •2.5.1. Идеальный органический синтез: фантастика или достижимая цель?
- •2.5.2. Синтоны как универсальные (хотя и виртуальные)
- •2.5.2.1. Реагенты и синтетическая эквивалентность
- •2.5.2.2. Понятие о синтонах
- •2.5.2.3. Синтонный подход как инструмент в разработке путей синтеза
- •2.5.2.4. Изоструктурные синтоны обратной полярности
- •2.6. Построение циклических структур
- •2.6.1. Специфика задач при синтезе циклических соединений
- •2.6.2. Обычные методы ациклической химии в построении циклических систем
- •2.6.2.1. Малые циклы: производные циклопропана и циклобутана
- •2.6.2.3. Циклы большего размера. Принципы макроциклизации. Эффекты многоцентровой координации
- •2.6.3. Циклоприсоединение - методы, специально созданные для получения циклических структур
- •2.6.3.4. Селективность циклообразования в комплексах переходных металлов
- •2.6.4. Радикальные реакции и их роль в синтезе циклических соединений
- •2.7. Расщепление связей с-с и перестройка углеродного скелета как синтетические методы
- •2.7.1. Расщепление одинарных связей с-с
- •2.7.2. Синтетическое использование реакций расщепления двойной углерод-углеродной связи
- •2.7.3. Перегруппировки углеродного скелета и некоторые возможности их использования в полном синтезе
- •2.7.3.1. Перегруппировка Кляйзена-Джонсона—Айрленда и гидрокси-перегруппировка Коупа
- •2.7.3.2. Трансформации малых циклов и их роль в полном синтезе
1.5. «Химия создает свой предмет...»
Еще в 1860 г. выдающийся химик XIX в. М. Бертло писал: «Химия создает свой предмет. Эта творческая способность, подобная искусству, коренным образом отличает химию от остальных естественных и гуманитарных наук» [33]. Попробуем разобраться, на чем основывалось подобное представление об исключительном положении химии в ряду других наук.
Действительно, во все времена естествознание занималось изучением Природы, поисками внутренней связи явлений и законов, управляющих этими явлениями. Природа для ученого всегда являлась изначальной данностью, которую надо было исследовать. Так, биолог изучает живую природу в том виде, в каком она сформировалась в условиях Земли. Астроном изучает уже существующие планеты, звезды, галактики и, наконец, всю Вселенную как целое. Объект исследования химика-органика — органические соединения, их свойства, реакции и закономерности поведения. Однако в отличие от своих коллег-естественников химик должен был сначала создать свой объект исследования, причем создать в самом прямом и точном смысле слова, т.е. синтезировать вещества, которые в Природе (или по крайней мере на Земле) тогда не существовали. В этом смысле органическая химия действительно принципиально отличается от всех других естественных наук, и с самого своего начала она составляет систему, которая черпает в самой себе как объекты исследования, так и проблемы, требующие решения, и развивается по своим вутренним законам. Аналогию такой способности к саморазвитию можно найти разве что в математике.
Так обстояло дело во времена Бертло, и в значительной мере так оно обстоит и сейчас, хотя исключительность органической химии в смысле создания своего объекта исследования несколько поколебалась с появлением совсем новых областей науки, таких, как физика твердого тела, нелинейная оптика, генная инженерия и т.д., развитие которых в значительной мере основано на создании сложных искусственных объектов.
Тем не менее основная мысль Бертло остается справедливой и сегодня: органическая химия выступает в роли подлинного творца, постоянно создавая ту самую искусственную природу, которую сама же и исследует, развивает и находит ей области применения.
Более того, и это особенно интересно, свойства этой искусственной природы оказываются столь же разнообразными, неожиданными и неисчерпаемыми, как свойства «обычной» природы. Это и составляет принципиальное отличие синтетических органических соединений от других классов искусственных объектов. В самом деле механические, электрические или логические структуры, создаваемые человеком, могут быть беспрецедентно сложными, не имеющими прототипов в Природе. Но при всей их сложности никаких качественно новых свойств, которые не могли быть предположены на стадии Проекта, в них обнаружиться не может, поскольку они проектировались и создавались для совершенно определенных целей.
Например, если мы проектируем и строим самолет, то он может быть лишь хорошим или плохим самолетом, но ни при каких обстоятельствах не окажется вдруг магнитофоном или мясорубкой. Напротив, если мы синтезируем новое соединение, предназначенное служить лекарством, то, вообще говоря, нет никакой гарантии, что оно не окажется токсином, дефолиантом, фотосенсибилизатором или еще чем-то совершенно непредвиденным. Столь же неожиданными могут оказаться результаты синтетических исследований, не преследующих каких-либо прикладных целей.
Так, в середине 1880-х годов молодой русский химик Зелинский, работавший в лаборатории Майера в Германии, разрабатывал новую схему получения тетрагидротиофена (67) из 2-хлорэтанола (68) с помощью подкупающе простой последовательности реакций, показанной на схеме 1.20. Однако осуществление синтеза пришлось внезапно остановить на стадии получения ключевого полупродукта, а именно ,'-дихлордиэтилсульфида (69). Вместо того, чтобы попробовать осуществить последнюю стадию синтеза, внутримолекулярную циклизацию по реакции Вюрца (кстати, в настоящее время можно с уверенностью утверждать, что при обработке 69 металлом ничего, кроме элиминирования не могло произойти), Зелинскому пришлось провести несколько недель в больнице из-за серьезнейших ожогов, вызванных контактом с таким простым и вполне невинно выглядевшим (на бумаге!) соединением, которое позднее приобрело вполне заслуженную дурную славу под названием «иприт». Однако подобной «зловредной» физиологической активностью вовсе не исчерпываются свойства иприта, и его открытие принесло
Схема 1.20
|
человечеству не только бедствия. Детальное исследование механизма его действия, вызванное суровой необходимостью в ходе первой мировой войны, привело к созданию нового и по тем временам наиболее эффективного направления в лечении злокачественных опухолей, основанного на использовании иприта и его структурных аналогов в качестве химиотерапевтических средств.
Рассмотренный пример (а число таких примеров исчисляется сотнями!) наглядно показывает, что органические соединения, созданные руками человека, в такой же мере могут служить источником совершенно неожиданных открытий, как и нерукотворные объекты исследований, поставляемых Природой.
Причины такого своеобразия органической химии лежат прежде всего в безграничности числа возможных органических соединений, а следовательно, в безграничном многообразии их свойств (частным проявлением этого многообразия является сам факт существования жизни на Земле).
Общеизвестно, что уникальность углерода состоит в сочетании двух свойств: его четырехвалентности и способности образовывать прочные связи как с другими атомами углерода, так и с атомами многих других элементов. Именно поэтому число возможных органических соединений оказывается бесконечно большим, в строгом смысле этого слова.
Как формулируется понятие бесконечности в математике, скажем, в простейшем случае бесконечности натурального ряда чисел? К любому сколь угодно большому числу можно прибавить единицу и получить следующий член этого ряда, с которым можно проделать ту же операцию, и т. д. Аналогично к любой сколь угодно сложной органической структуре можно присоединить (по крайней мере, теоретически), например, метальную группу и получить новое соединение. С той только разницей, что такую операцию со сложной органической молекулой можно выполнить множеством различных способов, а присоединять можно отнюдь не только метильную группу. Множественность вариантов усложнения проявляется на самых ранних этапах, начиная с молекул, содержащих всего несколько атомов, и число таких вариантов возрастает примерно пропорционально числу уже имеющжся в молекуле атомов углерода. В таком «ветвящемся дереве» множества структур коэффициент ветвления будет монотонно возрастать с ростом уже пройденных точек ветвления. Общее число членов такой системы должно расти по закону, близкому к факториалу (л!, где п — число атомов углерода в молекуле). Это означает, что даже в пределах не очень больших органических молекул число возможных структур становится поистине астрономическим.
Рассмотрим, например, соединения состава Qo (схема 1.21), относящиеся к узкому классу — насыщенным алифатическим кислотам обшей формулы 70, в которых заместителями R1 и R2 в любом возможном положении могут быть любые из десяти показанных на схеме групп.
Число подобных структур, возникающих просто при вариации природы и положения всего лишь одной из групп, R1 или R2, составит 1029. Если варьировать обе группы, то общее число возможных комбинаций составит 1029- Ю29, что примерно в 107 раз превышает число всех атомов Земли. Всего углерода, имеющегося в нашей Галактике, не хватит на то, чтобы получить все соединения из этого набора даже в миллиграммовых количествах. Каждый из третичных атомов углерода в соединениях 70 является асимметрическим центром, и поэтому любое из них может быть представлено 229 стерео-изомерами, что увеличивает общее число структур типа 70 примерно до 5,4 ■ 1066. Для их синтеза (по 1 мг каждого) не хватит уже всех нуклонов во всей наблюдаемой Вселенной. Так, от абстрактной математической бесконечности мы приходим к вполне реальному, поистине неисчерпаемому многообразию органических соединений.
Схема 1.21
|
Каковы же источники всего этого многообразия? Как бледная схема теоретически возможных виртуальных структур расцвечивается полнокровными красками реально существующих веществ? Таких источников два: природный (ископаемое органическое сырье и современные живые организмы), и искусственный (органический синтез).
Органическая химия зародилась как химия соединений, выделяемых из живых организмов (чему она и обязана своим названием). Однако природные соединения несмотря на огромное разнообразие их структур заполняют систему органических соединений очень прихотливым и — с чисто органохимической точки зрения — случайным образом, поскольку пути биосинтеза определяются прежде всего биологической целесообразностью, а вовсе не потребностями химической систематики.
Если взять любую рациональную классификацию органических соединений, например, по функциональным группам, и заполнить ее только структурами природных соединений, то мы увидим очень странную картину: отдельные кластеры, густо усеянные разнообразными структурами, области, содержащие лишь отдельные точки, и, наконец, огромные пустые области. В такой системе, например, будут щедро представлены неразветвленные алифатические кислоты с четным числом атомов углерода, но будет мало разветвленных кислот или кислоте нечетным числом атомов углерода; будет множество очень причудливо устроенных циклических и полициклических систем, но почти не встретится их простейших представителей. Редкими и «случайными» структурами будут представлены такие важнейшие классы, как алкилгалогениды, тиолы и сульфиды, нитро- и диазосоединения. Удивительно, но будут отсутствовать даже такие тривиальные соединения, как формальдегид, хлороформ, диэтиловый эфир или тетрагидрофуран. Мы уже не говорим о том, что многае важнейшие классы органических соединений, такие, как, например, различные типы металлоорганических соединений или борорганические производные, вообще никак не представлены в списке природных веществ.
Совершенно ясно, что с таким материалом, каким разнообразным бы он ни был, органическую химию, как науку, создать было бы невозможно. Именно поэтому с первых же своих самостоятельных шагов химики-органики с поразительной смелостью пошли по пути создания своего объекта исследования, синтезируя тысячи и тысячи неизвестных Природе веществ и изучая их свойства и взаимопревращения. Огромные усилия нескольких поколений ученых были потрачены на то, чтобы создать прежде всего фундамент фактов для новой науки — органической химии — и определить проблемы, которыми она должна заниматься. Без этого не могло бы состояться создание грандиозной области науки и промышленности и в конечном счете новой, искусственной природы. Эта созданная руками человека природа не только обеспечивает нас почти всем необходимым для повседневной жизни, но и становится на наших глазах все более значимым биогеохимическим фактором глобального масштаба*.
Здесь, конечно, не место излагать историю органической химии, но стоит, хотя бы схематически, проследить те главные линии ее развития, в которых определяющую роль играл и продолжает играть органический синтез.