
- •Органический синтез
- •Издание выпущено в свет при участии Института органической химии им. Н.Д. Зелинского Редакция литературы по химии
- •Глава 1
- •1.1. Цель однозначна и бесспорна
- •1.2. Цель однозначна, но не бесспорна
- •1.3. Синтез как поиск (цель бесспорна, но не однозначна).
- •1.4. Синтез как инструмент исследования
- •1.5. «Химия создает свой предмет...»
- •1.5.1. Выяснение закономерностей, связывающих
- •1.5.2. Создание новых структур, проблемных для органической химии
- •1.5.3. Расширение круга известных органических соединений
- •Глава 2
- •2.1. Каким образом может быть достигнуто требуемое превращение
- •2.1.1. Возможность протекания органической реакции. Общие соображения
- •2.1.2. Термодинамическая допустимость реакции
- •2.1.3. Наличие канала реакции.
- •2.1.4. Органическая реакция и синтетический метод
- •2.2. Образование связи с-с: ключевая тактическая проблема органического синтеза
- •2.2.1. Принципы сборки связи с-с. Гетеролитические реакции
- •2.2.2. Органические ионы и факторы, определяющие их стабильность
- •2.2.3. Электрофилы и нуклеофилы в реакциях образования связей с-с
- •2.2.3.1, Реакция Вюрца. Аллильное сочетание и родственные случаи
- •2.2.3.2. Карбонильные соединения как нуклеофилы и электрофилы
- •2.2.3.3. Сопряженное присоединение к аф-непределъным карбонильным соединениям. Аннелирование по Робинсону и присоединение по Михаэлю с независимой вариацией аддендов
- •2.2.3.4. Карбометаллирование алкинов
- •2.2.3.5. Ретросинтетический анализ ациклических целевых структур. Общие рекомендации.
- •Простая связь с—с в отсутствие близко расположенных функциональных групп.
- •Простая связь с-с в системе, содержащей два кислородных заместителя в положении 1,3.
- •Простая связь с-с в системе, содержащей два кислородных заместителя в положении 1,5.
- •2.2.3.6. Карбокатионные или карбанионные реагенты. О некоторых дополнительных возможностях проведения реакций образования связи с-с
- •2.3 Взаимопревращения функциональных групп
- •2.3.1. Уровень окисления углеродного центра и
- •2.3.2. Изогипсические трансформации. Синтетическая эквивалентность функциональных групп одного уровня окисления.
- •2.3.3. Неизогипсические трансформации как пути переходов между различными уровнями окисления
- •2.3.4. Взаимопревращение функциональных групп как стратегический метод в полном синтезе.
- •2.4. Как управлять селективностью органических реакций
- •2.4.1. Классификация проблем селективности
- •2.4.2 Селективность обеспечивается выбором подходящей реакции
- •2.4.3. Варьирование природы реагентов как способ управления селективностью реакции
- •2.4.4. Селективная активация
- •2.4.5. Защита функциональных групп как универсальный способ управления селективностью реакций
- •2.5. Реагенты, эквиваленты, синтоны
- •2.5.1. Идеальный органический синтез: фантастика или достижимая цель?
- •2.5.2. Синтоны как универсальные (хотя и виртуальные)
- •2.5.2.1. Реагенты и синтетическая эквивалентность
- •2.5.2.2. Понятие о синтонах
- •2.5.2.3. Синтонный подход как инструмент в разработке путей синтеза
- •2.5.2.4. Изоструктурные синтоны обратной полярности
- •2.6. Построение циклических структур
- •2.6.1. Специфика задач при синтезе циклических соединений
- •2.6.2. Обычные методы ациклической химии в построении циклических систем
- •2.6.2.1. Малые циклы: производные циклопропана и циклобутана
- •2.6.2.3. Циклы большего размера. Принципы макроциклизации. Эффекты многоцентровой координации
- •2.6.3. Циклоприсоединение - методы, специально созданные для получения циклических структур
- •2.6.3.4. Селективность циклообразования в комплексах переходных металлов
- •2.6.4. Радикальные реакции и их роль в синтезе циклических соединений
- •2.7. Расщепление связей с-с и перестройка углеродного скелета как синтетические методы
- •2.7.1. Расщепление одинарных связей с-с
- •2.7.2. Синтетическое использование реакций расщепления двойной углерод-углеродной связи
- •2.7.3. Перегруппировки углеродного скелета и некоторые возможности их использования в полном синтезе
- •2.7.3.1. Перегруппировка Кляйзена-Джонсона—Айрленда и гидрокси-перегруппировка Коупа
- •2.7.3.2. Трансформации малых циклов и их роль в полном синтезе
2.1.2. Термодинамическая допустимость реакции
Ископаемое сырье, служащее в конечном счете основным исходным материалом для органического синтеза, образовалось в результате чрезвычайно длительных биогеохимических процессов. За это время оно успело достигнуть состояния равновесия или, по крайней мере, к нему приблизиться. Это означает, что соединения, выделяемые из природных источников, приближены к состоянию с минимумом свободной энергии, по крайней мере, в анаэробных условиях. Органический синтез, как правило, имеет целью получение соединений с более высоким содержанием свободной энергии — свободной энергии, запасенной в виде образовавшихся связей и в большей упорядоченности системы, чем исходные вещества*.
Для того чтобы создать такие неравновесные системы, необходимо произвести некоторую работу, энергия для которой должна быть привнесена извне. Это может быть тепловая, электрическая или световая энергия, но чаще всего в органическом синтезе используется химическая энергия.
Источником химической энергии служат химические реагенты, энергия которых была запасена на стадии их приготовления за счет других источников (в конечном счете, как правило, за счет электрической энергии). В примере, рассмотренном выше, такими реагентами являлись магний и бром, полученные в свою очередь электролизом соответствующих солей. Отсюда становится понятным, почему столь большую, подчас ключевую роль в органическом синтезе играют такие высокоактивные реагенты, как свободные галогены (F2, Сl2, Вr2), металлы (например, Li, Na, К, Mg, Zn), простые и комплексные гидриды (например, LiH, NaH, KH, NaBH4, LiAlH4, Bu3SnH, В2Н6) и т. д.
С термодинамической точки зрения органический синтез может быть уподоблен сложному и опасному путешествию в горах со многими подъемами, спусками и обходами препятствий, имеющему своей конечной Целью достижение некоторой точки, расположенной на более высоком уровне, чем исходная. Схематический профиль пути, ведущего от стартового вещества А к конечному продукту Р, представлен на рис. 2.1.
Рис. 2.1. Энергетический профиль многостадийного синтеза продукта Р из исходного вещества А (В, С и г.д. — промежуточные продукты, Rgt 1—Rgt 4 — реагенты). |
Этот рисунок иллюстрирует три важных общих положения, характерных для типичной синтетической последовательности. Во-первых, как видно из схемы, для успешного продвижения по показанному маршруту необходима периодическая «подкачка» свободной энергии, что достигается введением в систему дополнительных регентов Rgt I—Rgt 4. Во-вторых, энергия, запасаемая при этом, может далее расходоваться постепенно, для обеспечения прохождения промежуточных точек (например, С -> D -»Е), что позволяет контролировать ход превращения. Так, в разобранном синтезе уксусной кислоты свободная энергия, внесенная в систему в виде MeMgBr, была далее использована в реакциях с диоксидом углерода, а затем с бромоводородом. В-третьих, очевидно, что промежуточные продукты в данной последовательности обладают некоторым избыточным запасом свободной энергии и, следовательно, они потенциально способны «свалиться в яму», т.е. превратиться в тупиковые, с точки зрения поставленной цели, соединения. Поэтому очень важно иметь возможность направить по нужному руслу энергию, запасаемую на стадиях промежуточных продуктов. Вопрос о факторам, определяющих относительную доступность альтернативных каналов реакции рассмотрен в следующем разделе.