
- •Идеальный газ, определение и его свойства
- •Термодинамическая система, термодинамический процесс, параметры идеального газа.
- •4Внутренняя энергия идеального газа. Параметры состояния
- •5.Работа газа. Параметр процесса.
- •6.Теплоемкость газа
- •7.Газовые смеси
- •Выражение 1-ого закона термодинамики для различных процессов.
- •Круговые циклы. Термодин. И холодильный коэф.
- •11.Цикл Карно. Теорема Карно.
- •12. Реальный газ. Парообразование в координатах pv.Теплота парообразования. Степень сухости пара.
- •13.Влажный воздух. Его св-ва.
- •15. Температурного поле тела. Температурный градиент.
- •16. Теплопроводность. Закон Фурье.
- •17.Теплопроводность плоской стенки. Основное ур-ние теплопроводности.
- •18.Конвективный теплообмен.Ур-ние Ньютона-Рихмана. Коэф.Теплоотдачи.
- •19. Определение коэф. Теплоотдачи с использованием критериальных ур-ний.
- •20.Лучистый теплообмен. Ур-ние Стефана-Больцмана.
- •21. Закон Кирхгофа, Ламберта
- •22. Теплопередача. Уравнение и коэффициент теплопередачи для плоской стенки
- •24. Микроклимат помещений
- •23. Теплообменные аппараты. Определение поверхности нагрева рекуперативных теплообменников
- •25.Сопротивление теплопередачи.
- •26. Теплоустойчивость ограждений. Коэффициент теплоусвоения s. Величина тепловой инерции d.
- •27.Воздухопроницаемость ограждений. Сопротивление воздухопроницаемости
- •29. Определение тепловых потерь здания по укрупненным измерителям.
- •30. Системы отопления
- •28.Определение тепловых потерь чз ограждения
- •31.Системы водяного отопления.
- •32.Гравитационное давление.
- •33. Опред. Циркуляционное давление в однотрубной системе водяного отопления.
- •34.Трубопроводы систем центрального отопления, их соединения.
- •35.Расширительный бак.
- •36.Воздухоудаление.
- •37. Свойство пара как теплоносителя:
- •38.Нагревательные приборы системцентр. Отопления.
- •39.Размещение от-ых приборов.
- •40. Выбор типа нагревательных приборов и определение их поверхности нагрева.
- •42.Регулировка теплоотдачи нагр. Приборов.
- •43. Топливо.
- •44. Горение топлива
- •45. Способы сжигания топлива. Виды топочных устр., их характер.
- •46. Котельная установка.
- •47. Централизованное теплоснабжение. Схема тэц.Тепловые сети.
- •48.Присоединение местных сист. Отопления к тепл. Сетям
- •49. Расчет и подбор водоструйного элеватора.
- •50. Назначение и классификация систем вентиляции, воздухообмен, способы его определения.
- •56. Вентиляторы.
24. Микроклимат помещений
Под микроклиматом помещения понимается совокупность теплового, воздушного и влажностного режимов в их взаимосвязи. Основное требование к микроклимату- поддержание благоприятных условий для людей, находящихся в помещении. В результате протекающих в организме человека процессов обмена веществ освобождается энергия в виде теплоты. Интенсивность теплоотдачи человека зависит от микроклимата помещения, характеризующегося t-рой внутр. воздуха tв, радиационной t-рой помещения tr, скоростью движ. и относительной влажностью φв воздуха. Сочетания этих параметров микроклимата, при ктр сохраняется тепловое равновесие в организме человека и отсутствует напряжение в его системе терморегуляции, наз. комфортными. Наиболее важно поддерживать в помещении в первую очередь благоприятные t-ные условия, т.к. подвижность и относительная влажность воздуха имеют несущ колебания. Кроме оптимальных различают допустимые сочетания параметров микроклимата, при которых человек ощущает небольшой дискомфорт.
Часть помещения, в которой человек находится основное рабочее время, называют обслуживаемой или рабочей зоной. Комфорт должен быть обеспечен прежде всего в этой зоне.
Тепловые условия в помещении зависят главным образом от tв и tr, т.е. от его t-ной обстановки, ктр. принято характеризовать двумя условиями комфортности. Первое условие комфортности температурной обстановки опред. такую область сочетаний tв и tr, при ктр. человек, находясь в центре рабочей зоны, не испытывает ни перегрева, ни переохлаждения.
Второе условие комфортности определяет допустимые температуры нагретых и охлажденных поверхностей при нахождении человека в непосредственной близости от них. Во избежание недопустимого радиационного перегрева или переохлаждения головы человека поверхности потолка и стен могут быть нагреты до допустимой температуры
Температура поверхности холодного пола зимой может быть лишь на 2—2,5°С ниже температуры воздуха помещения вследствие большой чувствительности ног человека к переохлаждению, но и не выше 22—34 °С в зависимости от назначения помещений
23. Теплообменные аппараты. Определение поверхности нагрева рекуперативных теплообменников
Теплообменные аппараты (теплообменники) - устройства, предназначенные для передачи теплоты от одного теплоносителя к другому.
В качестве теплоносителей используют пар, горячую воду, дымовые газы и другие тела. Теплообменники разделяются на рекуперативные, регенеративные и смесительные.
Рекуперативные: теплопередача от греющего теплоносителя к нагреваемому происходит через разделяющую их твёрдую стенку(стенку трубы). Обычно в стационарном режиме. К ним относят паровые котлы, водонагреватели, приборы системы центрального отопления и др.. В зависимости от взаимного направления движения теплоносителей:
противоточные - если теплоносители движутся в противоположном направлении (рис. а);
прямоточные - при движении теплоносителей в одном направлении (рис. б)
перекрестные - если теплоносители движутся в перекрестном направлении (рис. в).
Регенеративные: процесс теплообмена происходит в условиях нестационарного режима. В этих теплообменниках поверхность нагрева представляет собой специальную насадку из кирпича, металла или другого материала, которая сначала аккумулирует теплоту, а затем отдает ее нагреваемому теплоносителю. (регенераторы стеклоплавильных печей)
Смесительные: процесс теплообмена осуществляется при непосредственном соприкосновении и перемешивании теплоносителей(например, башенный охладитель, контактный водонагреватель).
Поверхностные теплообменники – рекуперативные и регенеративные, контактные –смесительные.
Тепловые расчеты теплообменников разделяются на проектные и поверочные. Проектные (конструктивные) тепловые расчеты выполняются при проектировании новых аппаратов для определения необходимой поверхности нагрева. Поверочные тепловые расчеты выполн, если известна поверхность нагрева теплообменника и требуется опред. кол-во переданной теплоты и конечные температуры теплоносителей.
При
проектном тепловом расчете теплообменника
площадь рабочей поверхности
F,
м2,
его опред. из основного уравнения
теплопередачи:
где
- тепловая мощность системы отопления,
Вт
QЗД – общие тепловые потери здания, Вт
k – коэффициент теплопередачи водоподогревателя, Вт/(м2 ·С)
k=(1500-2000) Вт/(м2 ·С) для водоводяных подогревателей
Δtср – средний температурный напор по всей пов-ти нагрева
,
При определении пов-ти теплообмена задача сводится к вычислению коэф. k и среднего по всей пов-ти t напора
Коэф. теплопередачи зависит от вида и скорости движения теплоносителя, его параметров состояния, материала стенок, степени загрязнения этих стенок.